
Source: www.csitnepal.com (Complied By Tej Shahi) Page 1

Chapter 1

`Introduction to Cryptography

The word cryptography comes from two Greek words meaning “secret writing” and is the art

and science of information hiding. This field is very much associated with mathematics and

computer science with application in many fields like computer security, electronic commerce,

telecommunication, etc.

So cryptography is a subject that should be of interest to many people, especially because we

now live in the Information Age, and our secrets can be transmitted in so many ways – email,

cell phone, etc. – and all these channels need to be protected [simon singh].

Secrecy and Encryption

In the ancient days, cryptography was mostly referred to as encryption – the mechanism to

convert the readable plaintext into unreadable (incomprehensible) text i.e. ciphertext, and

decryption – the opposite process of encryption i.e. conversion of ciphertext back to the

plaintext. Though the consideration of cryptography was on message confidentiality

(encryption) in the past, nowadays cryptography considers the study and practices of

authentication, digital signatures, integrity checking, and key management, etc.

Encryption mostly provides the secrecy of massage being transmitted over the communication

network. This is called confidentiality of massage. The only sender knows the keys and can

decipher the massage.

Cryptology

Cryptanalysis is the breaking of codes. Cryptanalysis encompasses all of the techniques to

recover the plaintext and/or key from the ciphertext.

The combined study of cryptography and cryptanalysis is known as cryptology. Though most of

the time we use cryptography and cryptology in the same way.

Objective of cryptography

Encryption and Decryption

Encryption is the process of encoding a message so that its meaning is not obvious i.e.

converting information from one form to some other unreadable form using some algorithm

called cipher with the help of secret message called key. The converting text is called is plaintext

and the converted text is called ciphertext.

cs
itn

ep
al

Downloaded from CSIT Tutor

Source: www.csitnepal.com (Complied By Tej Shahi) Page 2

Decryption is the reverse process, transforming an encrypted message back into its normal,

original form. In decryption process also the use of key is important.

Alternatively, the terms encode and decode or encipher and decipher are used instead of encrypt

and decrypt. That is, we say that we encode, encrypt, or encipher the original message to hide its

meaning. Then, we decode, decrypt, or decipher it to reveal the original message.

 Plaintext Ciphertext Original Plaintext

 Fig: Encryption-Decryption

The use of encryption techniques is being used since very long period as it can be noted from the

technique called Caesar’s cipher used by Julius Caesar for information passing to his soldiers.

Encryption techniques have also been extensively used in military purposes to conceal the

information from the enemy. Nowadays to gain the confidentiality encryption is being used in

many areas like communication, internet banking, digital right management, etc.

Key

A key is a parameter or a piece of information used to determine the output of cryptographic

algorithm. While doing the encryption, key determines the transformation of plaintext to the

cipher text and vice versa. Keys are also used in other cryptographic processes like message

authentication codes and digital signatures. Most of the cryptographic systems depend upon the

key and thus the secrecy of the key is very important and is one of the difficult problems in

practice. Another important issue for the key is its length. Since key is the sole entity that defines

the strength of the security (normally algorithm used is public) we need to select the key in a way

such that attacker should take long enough to try all possibilities. To prevent the key from being

guessed the choice of the key must be random.

Cipher

Decryption Encryption

cs
itn

ep
al

Downloaded from CSIT Tutor

Source: www.csitnepal.com (Complied By Tej Shahi) Page 3

A cipher is an algorithm for performing encryption and decryption. The operation of cipher

depends upon the special information called key. Without knowledge of the key, it should be

difficult, if not nearly impossible, to decrypt the resulting cipher into readable plaintext. There

are many types of encryption techniques that have advanced from history, however the

distinction of encryption technique can be broadly categorized in terms of number of key used

and way of converting plaintext to the ciphertext.

Cryptosystem

Cryptosystem is a 5-tuple/quintuple (E, D, M, K, C), where M set of plaintexts, K set of keys, C

set of ciphertexts, E set of encryption functions e: M  K  C and D set of decryption functions

d: C  K  M.

Example: Caesar Cipher

M = {sequences of letters}

K = {i | i is an integer and 0 ≤ i ≤ 25}

E = {Ek | k  K and for all letters m, Ek(m) = (m + k) mod 26 }

D = {Dk | k  K and for all letters c, Dk(c) = (26 + c – k) mod 26}

C = M

Cryptographic system characteristics

Cryptographic systems are characterized along three independent dimensions:

The type of operations used for transforming plaintext to ciphertext. All encryption

algorithms are based on two general principles: substitution, in which each element in the

plaintext (bit, letter, group of bits or letters) is mapped into another element, and transposition, in

which elements in the plaintext are rearranged. The fundamental requirement is that no

information be lost (that is, that all operations are reversible). Most systems, referred to as

product systems, involve multiple stages of substitutions and transpositions.

The number of keys used. If both sender and receiver use the same key, the system is referred

to as symmetric, single-key, secret-key, or conventional encryption. If the sender and receiver

use different keys, the system is referred to as asymmetric, two-key, or public-key encryption.

The way in which the plaintext is processed. A block cipher processes the input one block of

elements at a time, producing an output block for each input block. A stream cipher processes the

input elements continuously, producing output one element at a time, as it goes along.

cs
itn

ep
al

Downloaded from CSIT Tutor

Source: www.csitnepal.com (Complied By Tej Shahi) Page 4

Classical Cryptosystem
Historical pen and paper ciphers used in the past are sometimes known as classical ciphers.

These are the very old or quite old cryptosystem that were used in pre computer age.these crypto

system are too weak now days and can be broken easily with computer.

But we even studied these cryptosystem because they illustrate basic of the concepts of

cryptography.

Substitution Cipher

In substitution ciphers the letters are systematically replaced by other letters or symbols.

1. Caesar Cipher

It is the simple shift monoalphabetic classical cipher where each letter is replaced by a letter 3

position (actual Caesar cipher) ahead using the circular alphabetic ordering i.e. letter after Z is A.

Fig: Caesar Cipher

So when we encode HELLO WORLD, the

cipher text becomes KHOORZRUOG. Here we number each English alphabet starting from 0

(A) to 25 (Z). Each letter of the clear message is replaced by the letter whose number is obtained

by adding the key (a number from 0 to 25) to the letter's number modulo 26. See the picture to

visualize the Caesar cipher. The encryption can also be represented using modular arithmetic by

first transforming the letters into numbers, according to the scheme, A = 0, B = 1, ..., Z = 25.

Encryption of a letter c by a shift k can be described mathematically as,

  26 mod)(kmmEc k 

Decryption is performed similarly,

  26 mod)26(kccDm k 

Similarly, consider some examples of Caesar cipher;

Plaintext: meet me after the toga party

Ciphertext: PHHW PH DIWHU WKH WRJD SDUWB

cs
itn

ep
al

Downloaded from CSIT Tutor

Source: www.csitnepal.com (Complied By Tej Shahi) Page 5

Plaintext: the quick brown fox jumps over the lazy dog

Ciphertext: WKH TXLFN EURZQ IRA MXPSV RYHU WKH ODCB GRJ

Attacking the Cipher

Caesar Cipher is quite easily broken even with ciphertext only. One can attack the cipher text

using exhaustive search by trying all possible keys until you find the right one. Exhaustive search

is best suited if the key space is small and we have only 26 possible keys in Caesar cipher.

Another approach of attacking the cipher is statistical analysis where we compare the ciphertext

to 1-gram model of English.

Caesar’s Problem

The main problem with Caesar’s Cipher is that the key is too short and can be found by

exhaustive search. Again statistical frequencies not concealed well i.e. they look too much like

regular English letters. So the solution can be to increase the key length (can be done using

multiple letters in key) so that cryptanalysis gets harder.

Transposition Cipher

In transposition ciphers the letters are systematically arranged so that the actual position of letters

is gets changed making the text garble.

2. Rail-Fence Cipher

The Rail Fence Cipher is a form of transposition cipher that derives its name from the way in

which it is encoded. In the rail fence cipher, the plaintext is written downwards and diagonally

on successive "rails" of an imaginary fence, then moving up when we reach the bottom rail.

When we reach the top rail, the message is written downwards again until the whole plaintext is

written out. The message is then read off in rows.

For example, using 3 "rails" and a message of 'WE ARE DISCOVERED FLEE AT ONCE', the

cipherer writes out:

W . . . E . . . C . . . R . . . L . . . T . . . E

. E . R . D . S . O . E . E . F . E . A . O . C .

. . A . . . I . . . V . . . D . . . E . . . N . .

cs
itn

ep
al

Downloaded from CSIT Tutor

Source: www.csitnepal.com (Complied By Tej Shahi) Page 6

Then reads off:

WECRL TEERD SOEEF EAOCA IVDEN

Similarly, if we have 3 "rails" and a message of THIS IS THE PLAINTEXT, the cipherer writes

out (we are not showing diagonal move here just write in down rail a step ahead):

T S T P I E

H I H L N X

I S E A T T

The ciphertext is T S T P I E H I H L N X I S E A T T

The problem with Rail Fence Cipher is that the rail fence cipher is not very strong; the number of

practical keys is small enough that a cryptanalyst can try them all by hand. To decrypt we get the

number of letters to be skipped. For this if the number of rail is n key is

 nciphertextinletterstotal / so in our e.g. n = 3 and key is 18/3 = 6 i.e. skip 6 letters from the

letter you are reading every time to get plaintext (remember to go circular that is if count ends

continue from the starting letter leaving the read letter). See below:

We have

selected letter with index 1 THI. Now choose the letter with index 2, see below

T S T P I E H I H L N X I S E A T T

1 2 3 4 5 6 1 2 3 4 5 6 1 2 3 4 5 6

Continue like this until you read off all the characters.

3. Vigenere Cipher: Substitution Cipher (Polyalphateic)

It is like Caesar cipher, but uses a phrase for e.g. for the message THE BOY HAS THE BALL

and the key VIG, encipher using Caesar cipher for each letter:

key VIGVIGVIGVIGVIGV

plain THEBOYHASTHEBALL

T S T P I E H I H L N X I S E A T T

1 2 3 4 5 6 1 2 3 4 5 6 1 2 3 4 5 6

cs
itn

ep
al

Downloaded from CSIT Tutor

Source: www.csitnepal.com (Complied By Tej Shahi) Page 7

cipher OPKWWECIYOPKWIRG

Here, generally, we repeatedly write key above the plaintext and use the Caesar cipher for each

letter in the plaintext where key for each letter being processed is taken from the repeated key

letter just above it. This process is simplified by using the table as below called Tableau

 Key

Plaintext

Fig: Vigenere Tableau

Period: length of key. In example above it is 3.

Tableau: Table used to encipher and decipher. In tableau Vigènere cipher has key letters on top,

plaintext letters on the left or vice versa. It is also possible to have key on top (left) plaintexts in

middle and ciphertexts in left (top).

Assuming key on top and the plaintext on left, Decryption is performed by finding the position

of the ciphertext letter in a column, corresponding to the key letter, of the table, and then taking

the label of the row in which it appears as the plaintext letter. For example, in column V (key

letter), the ciphertext letter O appears in row T, which taken as the first plaintext letter. The

second letter is decrypted by looking up P in column I of the table; it appears in row H, which is

taken as the plaintext letter. This process continues until we find the plaintext letters for all the

ciphertext letters

4. One-Time Pad (simple XOR)

cs
itn

ep
al

Downloaded from CSIT Tutor

Source: www.csitnepal.com (Complied By Tej Shahi) Page 8

It is a variant of a Vigenère cipher with a random key at least as long as the message. Since it has

very high key length it is provably unbreakable. Joseph Mauborgne proposed this concept. He

suggested using a random key that is as long as the message, so the key need not be repeated. In

addition, the key is to be used to encrypt and decrypt a single message, and then is discarded.

Each new message requires a new key of the same length as the new message. In One-time pad

keys must be random, or we can attack the cipher by trying to regenerate the key approximations,

such as using pseudorandom number generators to generate keys, are not random. This approach

produces random output that bears no statistical relationship to the plaintext. Because the

ciphertext contains no information whatsoever about the plaintext, there is simply no way to

break the code.

5. Playfair Cipher

The best-known multiple-letter encryption cipher is the Playfair, which treats digrams in the

plaintext as single units and translates these units into ciphertext digrams

The Playfair algorithm is based on the use of a 5 x 5 matrix of letters constructed using a

keyword. Here keyword is MONARCHY then the matrix is:

M O N A R

C H Y B D

E F G I/J K

L P Q S T

U V W X Z

The matrix is constructed by filling in the letters of the keyword (minus duplicates) from left to

right and from top to bottom, and then filling in the remainder of the matrix with the remaining

letters in alphabetic order. Plaintext is encrypted two letters at a time, according to the following

rules:

1. Repeating plaintext letters that are in the same pair are separated with a filler letter, such as

x, so that balloon would be treated as ba lx lo on.

2. Two plaintext letters that fall in the same row of the matrix are each replaced by the letter to

the right, with the first element of the row circularly following the last. For example, ar is

cs
itn

ep
al

Downloaded from CSIT Tutor

Source: www.csitnepal.com (Complied By Tej Shahi) Page 9

encrypted as RM.

3. Two plaintext letters that fall in the same column are each replaced by the letter beneath,

with the top element of the column circularly following the last. For example, mu is

encrypted as CM.

4. Otherwise, each plaintext letter in a pair is replaced by the letter that lies in its own row and

the column occupied by the other plaintext letter. Thus, hs becomes BP and ea becomes IM

(or JM, as the encipherer wishes).

6. Hill Cipher

Another interesting multi letter cipher is the Hill cipher, developed by the mathematician Lester

Hill in 1929. The encryption algorithm takes m successive plaintext letters and substitutes for

them m ciphertext letters. The substitution is determined by m linear equations in which each

character is assigned a numerical value (a = 0, b = 1 ... z = 25).

For example, consider the plaintext "paymoremoney" and use the encryption key

K=(

)

The first three letters of the plaintext are represented by the vector

(

) then K. (

)=(

)mod 26=(

)=LNS

the ciphertext for the entire plaintext is LNSHDLEWMTRW.

Hence in general the hill cipher can be expressed as

C= E(K, P) = KP mod 26

P = D(K, P) = K-1C mod 26 = K1KP = P

As with Playfair, the strength of the Hill cipher is that it completely hides single-letter

frequencies. Indeed, with Hill, the use of a larger matrix hides more frequency information. Thus

a 3 x 3 Hill cipher hides not only single-letter but also two-letter frequency information.

cs
itn

ep
al

Downloaded from CSIT Tutor

Source: www.csitnepal.com (Complied By Tej Shahi) Page 10

Viruses, Worms and Trojan Horse

Introduction

Malicious logic is a set of instructions that cause a site's security policy to be violated.

Example: The following UNIX script is named ls and is placed in a directory.

cp /bin/sh /tmp/.xxsh

chmod o+s,w+x /tmp/.xxsh

rm ./ls

ls $*

It creates a copy of the UNIX shell that is setuid to the user executing this program. This

program is deleted, and then the correct ls command is executed. On most systems, it is against

policy to trick someone into creating a shell that is setuid to themselves. If someone is tricked

into executing this script, a violation of the (implicit) security policy occurs. This script is an

example of malicious logic.

Malicious code refers to a broad category of software threats to our network and systems.

Perhaps the most sophisticated types of threats to computer systems are presented by malicious

codes that exploit vulnerabilities in computer systems. Any code which modifies or destroys

data, steals data , allows unauthorized access, exploits or damage a system, and does something

that user did not intend to do, is called malicious code. There are various types of malicious code

we will encounter, including Viruses, Trojan horses, Logic bombs, and Worms.

A computer program is a sequence of symbols that are caused to achieve a desired functionality;

the program is termed malicious when their sequences of instructions are used to intentionally

cause adverse affects to the system. In the other words we can’t call any “bug” as a Malicious

Code. Malicious codes are also called programmed threats. The following figure provides an

overall taxonomy of Malicious Code.

cs
itn

ep
al

Downloaded from CSIT Tutor

Source: www.csitnepal.com (Complied By Tej Shahi) Page 11

As presented in the above figure, threats can be divided into two categories:

- Independents: are self contained program that can be scheduled and ran by the operating

system.

 - Needs host program: are essentially fragments of programs that can not exist

independently of some actual application program, utility or system program.

Vulnerability to Malicious code (Malware)

Various factors make a system more vulnerable to malware:

 Homogeneity – e.g. when all computers in a network run the same OS, if you can hack

that OS, you can break into any computer running it.

 Defects – most systems containing errors which may be exploited by malware.

 Unconfirmed code – code from a floppy disk, CD-ROM or USB device may be

executed without the user’s agreement.

 Over-privileged users – some systems allow all users to modify their internal structures.

 Over-privileged code – most popular systems allow code executed by a user all rights of

that user.

Trojan Horse
A worm is a program that can replicate itself and send copies from computers across network

connections.

A Trojan Horse is a program with an overt (documented or known) effect and a covert

(undocumented or unexpected) effect. Dan Edwards was the first to use this term.

A Trojan horse is a useful, or apparently useful, program or command procedure containing

hidden code that, when invoked, performs some unwanted or harmful actions

cs
itn

ep
al

Downloaded from CSIT Tutor

Source: www.csitnepal.com (Complied By Tej Shahi) Page 12

Trojan horses are impostors—files that claim to be something desirable but, in fact, are

malicious. Trojan horses contain malicious code that when triggered cause loss, or even theft, of

data. For a Trojan horse to spread, we must invite these programs onto our computers; for

example, by opening an email attachment or downloading and running a file from the Internet.

Trojan.Vundo is a Trojan horse.

To replicate itself, a network worm uses some sort of network vehicle. Examples include the

following

 Electronic mail facility : A worm mails a copy of itself to other systems.

 Remote execution capability : A worm executes a copy of itself on another

system.

 Remote login capability : A worm logs on a remote system as a user and then

uses commands to copy itself from one system to the other.

When a Trojan is activated on computer, the results can vary. Some Trojans are designed to be

more annoying than malicious (like changing your desktop, adding silly active desktop icons) or

they can cause serious damage by deleting files and destroying information on our system.

Trojans are also known to create a backdoor on our computer that gives malicious users access to

our system, possibly allowing confidential or personal information to be compromised.

Example: In the example above, the overt purpose is to list the files in a directory. The covert

purpose is to create a shell that is setuid to the user executing the script. Hence, this program is a

Trojan horse.

Example: A program named "waterfalls.scr" serves as a simple example of a trojan horse. The

author claims it is a free waterfall screensaver. When run, it instead unloads hidden programs,

commands, scripts, or any number of commands without the user's knowledge or consent.

Example: The NetBus program is designed to control a Windows NT workstation remotely.

Victim downloads and installs this that is usually disguised as a game program, or in other fun

programs. It acts as a server, accepting and executing commands for remote administrator which

includes intercepting keystrokes and mouse motions and sending them to attacker and also

allows attacker to upload, download files.

cs
itn

ep
al

Downloaded from CSIT Tutor

Source: www.csitnepal.com (Complied By Tej Shahi) Page 13

Trojan horses can make copies of themselves. One of the earliest Trojan horses was a version of

the game animal. When this game was played, it created an extra copy of itself. These copies

spread, taking up much room. The program was modified to delete one copy of the earlier

version and create two copies of the modified program. After a preset date, each copy of the later

version deleted itself after it was played.

A propagating Trojan horse (also called a replicating Trojan horse) is a Trojan horse that

creates a copy of itself.

Trojan horses are broken down in classification based on how they breach systems and the

damage they cause. The seven main types of Trojan horses are:

 Remote Access Trojans

 Data Sending Trojans

 Destructive Trojans

 Proxy Trojans

 FTP Trojans

 Security software disabler Trojans

 Denial-of-service attack (DoS) Trojans

Computer Worms

A computer virus infects other programs. A variant of the virus is a program that spreads from

computer to computer, producing copies of itself on each one. A computer worm is a program

that copies itself from one computer to another. Unlike a virus, it does not need to attach itself to

an existing program. Worms spread by exploiting vulnerabilities in operating systems.

A Worm uses computer networks to replicate itself. It searches for servers with security holes

and copies itself there. It then begins the search and replication process again

Research into computer worms began in the mid-1970s. Schoch and Hupp developed distributed

programs to do computer animations, broadcast messages, and perform other computations.

These programs probed workstations. If the workstation was idle, the worm copied a segment

onto the system. The segment was given data to process and communicated with the worm's

controller. When any activity other than the segment's began on the workstation, the segment

shut down.

cs
itn

ep
al

Downloaded from CSIT Tutor

Source: www.csitnepal.com (Complied By Tej Shahi) Page 14

Example: Internet Worm of 1988 targeted Berkeley, Sun UNIX systems entered the Internet;

within hours, it had rendered several thousand computers unusable. It used virus-like attack to

inject instructions into running program and run them. To recover from this the machines had to

disconnect system from Internet and reboot. To prevent re-infection, several critical programs

had to be patched, recompiled, and reinstalled. The only way to determine if the program had

suffered other malicious side effects was to disassemble it. Fortunately, the only purpose of this

virus turned out to be self-propagation.

Example: The Father Christmas worm was interesting because it was a form of macro worm. It

was distributed in 1987 and was designed for IBM networks. It was an electronic letter

instructing recipient to save it and run it as a program that drew Christmas tree, printed “Merry

Christmas!” It also checked address book, list of previously received email and sent copies to

each address. The worm quickly overwhelmed the IBM networks and forced the networks and

systems to be shut down. This worm had the characteristics of a macro worm. It was written in a

high-level job control language, which the IBM systems interpreted.

Worms with good intent

The Nachi family of worms, for example, tried to download and install patches from Microsoft's

website to fix vulnerabilities in the host system — by exploiting those same vulnerabilities. In

practice, although this may have made these systems more secure, it generated considerable

network traffic, rebooted the machine in the course of patching it, and did its work without the

consent of the computer's owner or user.

In 1982, at the Xerox Park research institute, a worm was created to find idle machines. It was

used to distribute workloads and was not a malicious worm. So worms can be helpful.

Types of Worms:

1. Electronic mail facility: A worm mails a copy of itself to other system.

2. Remote execution capability: A worm executes a copy of itself on another system.

cs
itn

ep
al

Downloaded from CSIT Tutor

Source: www.csitnepal.com (Complied By Tej Shahi) Page 15

3. Remote login capability: A worm logs onto a remote system as a user and then uses

commands to copy itself from one system to the other.

Computer Viruses

When the Trojan horse can propagate freely and insert a copy of itself into another file, it

becomes a computer virus. A computer virus is a program that inserts itself into one or more files

and then performs some (possibly null) action. Computer virus works in two phases. The first

phase, in which the virus inserts itself into a file, is called the insertion phase. The second phase,

in which it performs some action, is called the execution phase. The following pseudo-code

fragment shows how a simple computer virus works.

beginvirus:

 if spread-condition then begin

 for some set of target files do begin

 if target is not infected then begin

 determine where to place virus instructions

 copy instructions from beginvirus to endvirus into target

 alter target to execute added instructions

 end;

 end;

 end;

 perform some action(s)

 goto beginning of infected program

endvirus:

Cryptanalytic Attacks (asked many times in exam)

Cryptanalysis (from the Greek kryptós, "hidden", and analýein, "to loosen" or "to untie") is the

study of methods for obtaining the meaning of encrypted information, without access to the

secret information which is normally required to do so. Typically, this involves finding a secret

key.

cs
itn

ep
al

Downloaded from CSIT Tutor

Source: www.csitnepal.com (Complied By Tej Shahi) Page 16

Cryptanalysis usually excludes methods of attack that do not primarily target weaknesses in the

actual cryptography, such as bribery, physical coercion, burglary, keystroke logging, and social

engineering, although these types of attack are an important concern and are often more effective

than traditional cryptanalysis.

Cryptanalysis can be performed under a number of assumptions about how much can be

observed or found out about the system under attack. It it is normally assumed that the general

algorithm is known; this is Kerckhoffs' principle of "the enemy knows the system". There can be

many types of attacks and broadly we categorize them as attack models:

Type of

Attack

Known to Cryptanalyst

Ciphertext

only

 Encryption algorithm

 Ciphertext

Known

plaintext

 Encryption algorithm

 Ciphertext

 One or more plaintext-ciphertext pairs formed with the secret key

Chosen

plaintext

 Encryption algorithm

 Ciphertext

 Plaintext message chosen by cryptanalyst, together with its corresponding

ciphertext generated with the secret key

Chosen

ciphertext

 Encryption algorithm

 Ciphertext

 Purported ciphertext chosen by cryptanalyst, together with its

corresponding decrypted plaintext generated with the secret key

Chosen text  Encryption algorithm

 Ciphertext

 Plaintext message chosen by cryptanalyst, together with its corresponding

ciphertext generated with the secret key

 Purported ciphertext chosen by cryptanalyst, together with its

corresponding decrypted plaintext generated with the secret key

cs
itn

ep
al

Downloaded from CSIT Tutor

Source: www.csitnepal.com (Complied By Tej Shahi) Page 17

Bruit Force attacks

A brute-force attack involves trying every possible key until an intelligible translation of the

ciphertext into plaintext is obtained. On average, half of all possible keys must be tried to

achieve success.

Rotor machines

See text Book

cs
itn

ep
al

Downloaded from CSIT Tutor

Source: www.csitnepal.com (Compiled By Tej Shahi) Page 1

Chapter2

Basic of Modern cryptography

One Way Function

A trapdoor function' is a function that is easy to compute in one direction, yet believed to be

difficult to compute in the opposite direction (finding its inverse) without special information,

called the "trapdoor". Trapdoor functions are widely used in cryptography.

An example of a simple mathematical trapdoor is "6895601 is the product of two prime numbers.

What are those numbers?"

- A typical solution would be to try dividing 6895601 by several prime numbers until finding the

answer. However, if one is told that 1931 is part of the answer, one can find the answer by

entering "6895601 ÷ 1931" into any calculator.

This example is not a sturdy trapdoor function--modern computers can guess all of the possible

answers within a second--but this sample problem could be improved by using the product of

two much larger primes.

Symmetric and Asymmetric cryptography

Symmetric Cipher Model

A symmetric encryption scheme has five ingredients as shown in figure:

1. Plaintext: This is the original intelligible message or data that is fed into the algorithm as

input.

2. Encryption algorithm: The encryption algorithm performs various substitutions and

transformations on the plaintext.

3. Secret key: The secret key is also input to the encryption algorithm. The key is a value

independent of the plaintext and of the algorithm. The algorithm will produce a different

output depending on the specific key being used at the time. The exact substitutions and

transformations performed by the algorithm depend on the key.

4. Ciphertext: This is the scrambled message produced as output. It depends on the plaintext

and the secret key. For a given message, two different keys will produce two different

ciphertexts. The ciphertext is an apparently random stream of data and, as it stands, is

unintelligible.

5. Decryption algorithm: This is essentially the encryption algorithm run in reverse. It takes

the ciphertext and the secret key and produces the original plaintext.

cs
itn

ep
al

Downloaded from CSIT Tutor

Source: www.csitnepal.com (Compiled By Tej Shahi) Page 2

Asymmetric Cipher model

Review of Symmetric Cryptography

Two properties of symmetric-key schemes:

1. The algorithm requires same secret key for encryption and decryption.

2. Encryption and decryption are essentially identical (symmetric algorithms).

Analogy for symmetric key algorithms: Symmetric key schemes are like a safe box with a strong

lock. Everyone with the key can deposit and retrieve messages.

Main problems with symmetric key schemes are:

1. Requires secure transmission of secret key.

2. In a network environment, each pair of users has to have a different key resulting in too

many keys (n (n -1)/ 2 key pairs.

New Idea: Make a slot in the safe box so that everyone can deposit a message, but only the

receiver can open the safe and look at the content of it. Idea: Split key.

Public Key Cryptography Protocol (Model)

Key (K)

cs
itn

ep
al

Downloaded from CSIT Tutor

Source: www.csitnepal.com (Compiled By Tej Shahi) Page 3

1. Alice and Bob agree on a public-key cryptosystem.

2. Bob sends Alice his public key.

3. Alice encrypts her message with Bob's public key and sends the ciphertext.

4. Bob decrypts ciphertext using his private key.

Mechanisms that can be realized with public-key algorithms

1. Key establishment protocols (e.g., Diffie-Hellman key exchange) and key transport

protocols (e.g., via RSA) without prior exchange of a joint secret.

2. Digital signature algorithms (e.g., RSA, DSA)

3. Encryption

There are three families of Public-Key (PK) algorithms of practical relevance:

1. Integer factorization algorithms (RSA, ...)

2. Discrete logarithms (Diffie-Hellman, DSA, ...)

3. Elliptic curves (EC)

In this lecture we only consider Algorithms of family i.e. Integer Factorization Algorithm and

Discrete Logarithms.

Comparison between Symmetric and asymmetric

 Secret Key (Symmetric) Public Key (Asymmetric)

Number of

keys

1 2

Protection of

key

Must be kept secret One key must be kept secret; the other

can be freely exposed

Best uses Cryptographic workhorse; secrecy and

integrity data—single characters to

blocks of data, messages, files

Key exchange, authentication

Key Must be out-of-band Public key can be used to distribute

Encryption Key (KE) Decryption Key (KD)

cs
itn

ep
al

Downloaded from CSIT Tutor

Source: www.csitnepal.com (Compiled By Tej Shahi) Page 4

 Secret Key (Symmetric) Public Key (Asymmetric)

distribution other keys

Speed Fast Slow; typically, 10,000 times slower

than secret key

Digital signature

In this case, A prepares a message to B and encrypts it using A's private key before transmitting

it. B can decrypt the message using A's public key. Because the message was encrypted using

A's private key, only A could have prepared the message. Therefore, the entire encrypted

message serves as a digital signature. In addition, it is impossible to alter the message without

access to A's private key, so the message is authenticated both in terms of source and in terms of

data integrity.

In the preceding scheme, the entire message is encrypted, which, although validating both author

and contents, requires a great deal of storage. Each document must be kept in plaintext to be used

for practical purposes

A more efficient way of achieving the same results is to encrypt a small block of bits that is a

function of the document. Such a block, called an authenticator, must have the property that it is

infeasible to change the document without changing the authenticator.

If the authenticator is encrypted with the sender's private key, it serves as a signature that verifies

origin, content, and sequencing. This is called Hash Authentication and we discuss it later in

detail.

cs
itn

ep
al

Downloaded from CSIT Tutor

Source: www.csitnepal.com (Compiled by Tej Shahi) Page 1

Chapter 3

Conventional Encryption / Secret Key Cryptography

Stream and Block Ciphers

A stream cipher is one that encrypts a digital data stream one bit or one byte at a time. Examples

of classical stream ciphers are the auto keyed Vigenère cipher and the Vernam cipher. A block

cipher is one in which a block of plaintext is treated as a whole and used to produce a ciphertext

block of equal length. Typically, a block size of 64 or 128 bits is used. Using some of the modes

of operation explained in Chapter 6, a block cipher can be used to achieve the same effect as a

stream cipher.

Stream V/s Block Ciphers

 Advantages of Stream Ciphers

- Speed of transformation. Because each symbol is encrypted without regard for any other

plaintext symbols, each symbol can be encrypted as soon as it is read. Thus, the time to encrypt a

symbol depends only on the encryption algorithm itself, not on the time it takes to receive more

plaintext.

- Low error propagation. Because each symbol is separately encoded, an error in the encryption

process affects only that character.

 Disadvantages of Stream Ciphers

- Low diffusion. Each symbol is separately enciphered. Therefore, all the information of that

symbol is contained in one symbol of the ciphertext.

- Susceptibility to malicious insertions and modifications. Because each symbol is separately

enciphered, an active interceptor who has broken the code can splice together pieces of previous

messages and transmit a spurious new message that may look authentic.

 Advantages of Block Ciphers

- High diffusion. Information from the plain-text is diffused into several ciphertext symbols. One

ciphertext block may depend on several plaintext letters.

- Immunity to insertion of symbols. Because blocks of symbols are enciphered, it is impossible

to insert a single symbol into one block. The length of the block would then be incorrect, and the

decipherment would quickly reveal the insertion.

 Disadvantages of Block Ciphers

- Slowness of encryption. The person or machine using a block cipher must wait until an entire

block of plaintext symbols has been received before starting the encryption process.

cs
itn

ep
al

Downloaded from CSIT Tutor

Source: www.csitnepal.com (Compiled by Tej Shahi) Page 2

- Error propagation. An error will affect the transformation of all other characters in the same

block.

The Feistel Cipher
Feistel proposed that we can approximate the ideal block cipher by utilizing the concept of a

product cipher, which is the execution of two or more simple ciphers in sequence in such a way

that the final result or product is cryptographically stronger than any of the component ciphers.

The essence of the approach is to develop a block cipher with a key length of k bits and a block

length of n bits, allowing a total of 2k possible transformations, rather than the 2n!

transformations available with the ideal block cipher.

Diffusion and Confusion

The terms diffusion and confusion were introduced by Claude Shannon to capture the two basic

building blocks for any cryptographic system. Shannon's concern was to thwart cryptanalysis

based on statistical analysis. The reasoning is as follows. Assume the attacker has some

knowledge of the statistical characteristics of the plaintext. For example, in a human-readable

message in some language, the frequency distribution of the various letters may be known. Or

there may be words or phrases likely to appear in the message (probable words). If these

statistics are in any way reflected in the ciphertext, the cryptanalyst may be able to deduce the

encryption key, or part of the key, or at least a set of keys likely to contain the exact key. In what

Shannon refers to as a strongly ideal cipher, all statistics of the ciphertext are independent of the

particular key used.

Feistel Cipher Structure

Figure 3.2 depicts the structure proposed by Feistel. The inputs to the encryption algorithm are a

plaintext block of length 2w bits and a key K. The plaintext block is divided into two halves, L0

and R0. The two halves of the data pass through n rounds of processing and then combine to

produce the ciphertext block. Each round i has as inputs Li-1 and Ri-1, derived from the previous

round, as well as a subkey Ki, derived from the overall K. In general, the subkeys Ki are

different from K and from each other.

cs
itn

ep
al

Downloaded from CSIT Tutor

Source: www.csitnepal.com (Compiled by Tej Shahi) Page 3

Data Encryption Standard (DES)

The Data Encryption Standard (DES) is a cipher (a method for encrypting information) selected

as an official Federal Information Processing Standard (FIPS) for the United States in 1976, and

which has subsequently enjoyed widespread use internationally. The algorithm was initially

controversial, with classified design elements, a relatively short key length, and suspicions about

a National Security Agency (NSA) backdoor. DES consequently came under intense academic

scrutiny, and motivated the modern understanding of block ciphers and their cryptanalysis. DES

All rounds have the same structure. A substitution

is performed on the left half of the data. This is

done by applying a round function F to the right

half of the data and then taking the exclusive-OR

of the output of that function and the left half of

the data. The round function has the same general

structure for each round but is parameterized by

the round subkey Ki. Following this substitution, a

permutation is performed that consists of the

interchange of the two halves of the data.[4] This

structure is a particular form of the substitution-

permutation network (SPN) proposed by Shannon.

The exact realization of a Feistel network depends

on the choice of the following parameters and

design features:

Block size, Key size, Number of rounds, Subkey

generation algorithm, Round function, Fast

software encryption/decryption, Ease of analysis.

cs
itn

ep
al

Downloaded from CSIT Tutor

mk:@MSITStore:F:/MY%20lectures%20NOtes/B.ScCSIT/cryptography/Cryptography%20and%20Network%20Security%20Principles%20and%20Practices,%20Fourth%20Edition.chm::/0131873164/ch03lev1sec1.html#ch03fn4

Source: www.csitnepal.com (Compiled by Tej Shahi) Page 4

is now considered to be insecure for many applications. This is chiefly due to the 56-bit key size

being too small; in January, 1999, distributed.net and the Electronic Frontier Foundation

collaborated to publicly break a DES key in 22 hours and 15 minutes.

Description: DES is the block cipher - an algorithm that takes a fixed-length string of plaintext

bits and transforms it through a series of complicated operations into another ciphertext bitstring

of the same length. In the case of DES, the block size is 64 bits. DES also uses a key to

customize the transformation, so that decryption can supposedly only be performed by those who

know the particular key used to encrypt. The key consists of 64 bits; however, only 56 of these

are actually used by the algorithm. Eight bits are used solely for checking parity, and are

thereafter discarded. Hence the effective key length is 56 bits, and it is usually quoted as such.

Structure: The algorithm's overall structure is shown in Figure below there are 16 identical stages

of processing, termed rounds. There is also an initial and final permutation, termed IP and FP

(see appendix for IP and FP scheme), which are inverses (IP "undoes" the action of FP, and vice

versa). IP and FP have almost no cryptographic significance, but were apparently included in

order to facilitate loading blocks in and out of mid-1970s hardware, as well as to make DES run

slower in software.

Before the main rounds, the block is divided into two 32-bit halves and processed alternately;

this criss-crossing is known as the Feistel scheme. The Feistel structure ensures that decryption

and encryption are very similar processes - the only difference is that the subkeys are applied in

the reverse order when decrypting. The rest of the algorithm is identical. This greatly simplifies

implementation, particularly in hardware, as there is no need for separate

encryption and decryption algorithms.

The  symbol denotes the exclusive-OR (XOR) operation. The F-

function scrambles half a block together with some of the key. The

output from the F-function is then combined with the other half of the

block, and the halves are swapped before the next round. After the final

round, the halves are not swapped; this is a feature of the Feistel

structure which makes encryption and decryption similar processes.

The Feistel (F) function (Mangler Function): The F-function, depicted in

Figure below, operates on half a block (32 bits) at a time and consists of

four stages:

Expansion: the 32-bit half-block is expanded to 48 bits using the

expansion permutation (see appendix for expansion permutation),

denoted E in the diagram, by duplicating some of the bits.

Key Mixing: the result is combined with a subkey using an XOR

operation. Sixteen 48-bit subkeys - one for each round - are derived from

the main key using the key schedule described below.

Substitution: after mixing in the subkey, the block is divided into eight

6-bit pieces before processing by the S-boxes, or substitution boxes.

Each of the eight S-boxes replaces its six input bits with four output bits

according to a non-linear transformation, provided in the form of a

lookup table (see appendix for table). The S-boxes provide the core of

cs
itn

ep
al

Downloaded from CSIT Tutor

Source: www.csitnepal.com (Compiled by Tej Shahi) Page 5

the security of DES - without them, the cipher would be linear, and trivially breakable.

Permutation: finally, the 32 outputs from the S-boxes are rearranged according to a fixed

permutation, the P-box (see appendix for permutation P).

 The alternation of substitution from the S-boxes, and permutation of bits from the P-box

and E-expansion provides so-called "confusion and diffusion" respectively, a concept identified

by Claude Shannon in the 1940s as a necessary condition for a secure yet practical cipher.

Key Schedule: Figure below illustrates the key schedule for encryption - the algorithm which

generates the subkeys. Initially, 56 bits of the key are selected from the

initial 64 by Permuted Choice 1, PC-1(see appendix for PC1) - the

remaining eight bits are either discarded or used as parity check bits.

The 56 bits are then divided into two 28-bit halves; each half is

thereafter treated separately. In successive rounds, both halves are

rotated left by one or two bits specified for each round (see appendix for

key rotation schedule), and then 48 subkey bits are selected by

Permuted Choice 2, PC-2(see appendix for PC2) - 24 bits from the left

half, and 24 from the right. The rotations (denoted by "<<<" in the

diagram) mean that a different set of bits is used in each subkey; each

bit is used in approximately 14 out of the 16 subkeys.

The key schedule for decryption is similar - the subkeys are in reverse

order compared to encryption. Apart from that change, the process is the

same as for encryption.

Weak and Semi-Weak Keys: There are sixteen DES keys that are not

suggested for use. However the probability of getting such keys is very

small as given by 16/256. The sixteen weak keys are keys with all ones,

all zeroes, alternating zeroes and ones, and alternating ones and zeroes

for two 28 bits parts of the key generated when PC-1 is used.

Details of Single Round

Figure shows the internal structure of a single round. Again, begin by

focusing on the left-hand side of the diagram. The left and right halves

of each 64-bit intermediate value are treated as separate 32-bit quantities, labeled L (left) and R

(right). As in any classic Feistel cipher, the overall processing at each round can be summarized

in the following formulas:

cs
itn

ep
al

Downloaded from CSIT Tutor

Source: www.csitnepal.com (Compiled by Tej Shahi) Page 6

Note: see the table used in this algorithm in Text Book.

Security and cryptanalysis of DES:

Although more information has been published on the cryptanalysis of DES than any other block

cipher, the most practical attack to date is still a brute force approach. Various minor

cryptanalytic properties are known, and three theoretical attacks are possible which, while having

a theoretical complexity less than a brute force attack, require an unrealistic amount of known or

chosen plaintext to carry out, and are not a concern in practice. In spite of all the criticism and

weaknesses of DES, there is no known example of anyone actually suffering monetary losses

because of DES security limitations.

Brute force attack: For any cipher, the most basic way of attack is brute force - trying every

possible key. The length of the key gives the number of possible keys, and hence the feasibility

of this approach. For DES, questions were raised about the adequacy of its key size early on,

even before it was adopted as a standard, and it was the small key size, rather than theoretical

cryptanalysis, which dictated a need for a replacement algorithm. It is known that the NSA

encouraged, if not persuaded, IBM to reduce the key size from 128 to 64 bits, and from there to

56 bits; this is often taken as an indication that the NSA thought it would be able to break keys of

this length even in the mid-1970s.

2. Advanced Encryption Standard (AES)

The Rijndael proposal for AES defined a cipher in which the block length and the key length can

be independently specified to be 128, 192, or 256 bits. The AES specification uses the same

three key size alternatives but limits the block length to 128 bits. A number of AES parameters

depend on the key length

cs
itn

ep
al

Downloaded from CSIT Tutor

Source: www.csitnepal.com (Compiled by Tej Shahi) Page 7

Key size (words/bytes/bits) 4/16/128 6/24/192 8/32/256

Plaintext block size (words/bytes/bits) 4/16/128 4/16/128 4/16/128

Number of rounds 10 12 14

Round key size (words/bytes/bits) 4/16/128 4/16/128 4/16/128

Expanded key size (words/bytes) 44/176 52/208 60/240

AES Encryption Decryption Technique

Figure 1 : The encryption/decryption Rounds on AES

This figure shows the overall structure of AES. The input to the encryption and decryption

algorithms is a single 128-bit block. In FIPS PUB 197, this block is depicted as a square matrix

of bytes. This block is copied into the State array, which is modified at each stage of encryption

or decryption. After the final stage, State is copied to an output matrix.

cs
itn

ep
al

Downloaded from CSIT Tutor

Source: www.csitnepal.com (Compiled by Tej Shahi) Page 8

AES data structures: the following matrixes are used in AES encryption and Decryptions

The structure of AES is quite simple. For both encryption and decryption, the cipher begins with

an AddRoundKey stage, followed by nine rounds that each includes all four stages, followed by

a tenth round of three stages as shown in figure 1 above.

The four stages are:

Substitute bytes: Uses an S-box to perform a byte-by-byte substitution of the block

ShiftRows: A simple permutation

MixColumns: A substitution that makes use of arithmetic over GF(28)

AddRoundKey: A simple bitwise XOR of the current block with a portion of the expanded key

a) Substitute Bytes Transformation

The forward substitute byte transformation, called SubBytes, is a simple table lookup (Figure

5.4a). AES defines a 16 x 16 matrix of byte values, called an S-box (see table on Text Book) that

contains a permutation of all possible 256 8-bit values. Each individual byte of State is mapped

into a new byte in the following way:

The leftmost 4 bits of the byte are used as a row value and the rightmost 4 bits are used as a

column value. These row and column values serve as indexes into the S-box to select a unique 8-

bit output value. For example, the hexadecimal value {95} references row 9, column 5 of the S-

box, which contains the value {2A}. Accordingly, the value {95} is mapped into the value {2A}.

cs
itn

ep
al

Downloaded from CSIT Tutor

Source: www.csitnepal.com (Compiled by Tej Shahi) Page 9

The inverse substitute byte transformation, called InvSubBytes, makes use of the inverse S-box

shown in (Text book). For example, that the input {2A} produces the output {95} and the input

{95} to the S-box produces {2A}.

b) ShiftRows Transformation

The forward shift row transformation, called ShiftRows, is depicted in Figure below. The first

row of State is not altered. For the second row, a 1-byte circular left shift is performed. For the

third row, a 2-byte circular left shift is performed. For the fourth row, a 3-byte circular left shift

is performed. The following is an example of ShiftRows:

c) MixColumns Transformation

The forward mix column transformation, called MixColumns, operates on each column

individually. Each byte of a column is mapped into a new value that is a function of all four

bytes in that column.

cs
itn

ep
al

Downloaded from CSIT Tutor

Source: www.csitnepal.com (Compiled by Tej Shahi) Page 10

d) AddRoundKey Transformation

In the forward add round key transformation, called AddRoundKey, the 128 bits of State are

bitwise XORed with the 128 bits of the round key. As shown in Figure below, the operation is

viewed as a columnwise operation between the 4 bytes of a State column and one word of the

round key; it can also be viewed as a byte-level operation.

AES Key Expansion Algorithm

The AES key expansion algorithm takes as input a 4-word (16-byte) key and produces a linear

array of 44 words (176 bytes). This is sufficient to provide a 4-word round key for the initial

AddRoundKey stage and each of the 10 rounds of the cipher. The following pseudocode

describes the expansion:

KeyExpansion (byte key[16], word w[44])

{

 word temp

 for (i = 0; i < 4; i++)

 w[i] = (key[4*i], key[4*i+1],key[4*i+2],key[4*i+3]);

 for (i = 4; i < 44; i++)

 {

 temp = w[i 1];

cs
itn

ep
al

Downloaded from CSIT Tutor

Source: www.csitnepal.com (Compiled by Tej Shahi) Page 11

 if (i mod 4 = 0)

 temp = SubWord (RotWord (temp))ExOR Rcon[i/4];

 w[i] = w[i4]

 }

}

The key expansion technique is shown in figure below

Where g is a special function consist of following sub functions

1. RotWord performs a one-byte circular left shift on a word. This means that an input word

[b0, b1, b2, b3] is transformed into [b1, b2, b3, b0].

2. SubWord performs a byte substitution on each byte of its input word, using the S-box.

3. The result of steps 1 and 2 is XORed with a round constant, Rcon[j].

The round constant is a word in which the three rightmost bytes are always 0.(See the text book

for more details)

3. International Data Encryption Algorithm (IDEA)

In cryptography, the IDEA is a block cipher designed by Xuejia Lai and James Massey and was

first described in 1991. The algorithm was intended as a replacement for the Data Encryption

Standard.

cs
itn

ep
al

Downloaded from CSIT Tutor

Source: www.csitnepal.com (Compiled by Tej Shahi) Page 12

Operation: IDEA operates on 64-bit blocks using a 128-bit key, and consists of a series of eight

identical rounds (see figure below) and an output round (the half-round, see figure below). The

processes for encryption and decryption are similar. IDEA derives much of its security by

interleaving operations from different groups - modular addition (addition mod 216, denoted by

), modular multiplication (multiplication mod 216+1 denoted by , where the all-zero word

(0x0000) is interpreted as 216),, and bitwise eXclusive OR (XOR) (denoted by ), - which are

algebraically "incompatible" in some sense. The blow figures in left shows a round (1-8) and in

right shows final "half round.

Key schedule: The 128 bit key is used to generate

52 sub keys of length 16 bits. 6 keys are used for

each round and the remaining 4 keys are used in

final half round. The figure below shows the key generation mechanisms where we start getting

the subkeys from the starting position of the 128 bits key, so in first round we get 8 subkeys. In

each of the round of sub key generation 128 bits keys undergoes a 25 bit position right to

generate next set of keys i.e. start with bit position 0, 25, 50 and so on until all 52 keys are

derived.

128 bits key

K1 K2 K3 K4 K5 K6 K7 K8

Start from 25th bit;128 bits key 128 bits key

 K9 K10 K11 K12 K13 K14 K15 K16

Round Operations: It has been mentioned above that IDEA uses 8 full rounds and 1 half round.

We now break the 8 full round and make it 16 rounds such that there are total 17 rounds where 9

odd rounds (1, 3, …., 17) are identical and 8 even rounds (2, 4, ….,16) are identical. Each odd

round takes 4 subkeys and each even round takes 2 subkeys.

cs
itn

ep
al

Downloaded from CSIT Tutor

Source: www.csitnepal.com (Compiled by Tej Shahi) Page 13

Odd Round: Odd round is simple and uses four keys where first and fourth keys are uses

multiplication mod 216+1 operation with first and fourth 16 bits fragment of 64 bits input block

respectively. The second and third subkeys are subjected to addition mod 216 with second and

third bits fragment of 64 bits input block respectively. The output so obtained from operations

with first and fourth input sub-block will be first and fourth input for next round and output from

operations with second and third input sub-block will be reversed i.e. becomes third and second

input for next round. If Xa, Xb, Xc, and Xd are input sub-blocks and Ka, Kb, Kc, and Kd are

subkeys then we can write algebraic expression for odd round as:

 Xa = Xa Ka; Xb = Xc Kc; Xc = Xb Kb; Xd = Xd Kd; (see figure above)

Even Round: Even round is bit complicated then the odd round. There are four input sub-blocks

(Xa, Xb, Xc, and Xd) from the previous round and two subkeys (Ke and Kf). In even rounds first

and second input sub-blocks are subjected to XOR operation to get single 16 bits output (say,

Yin) and third and fourth input sub-blocks are subjected to XOR operation to get single 16 bits

output (say, Zin). Yin and Zin are fed to mangler function along with Ke, and Kf to get outputs

Yout and Zout, where Yout is XOR’ed with Xa and Xb, to get first two input sub-blocks for next

round and Zout is XOR’ed with Xc and Xd, to get last two input sub-blocks for next round.

Algebraic expressions for even round can be written as:

Yin = Xa  Xb; Zin = Xc  Xd; Yout = ((Ke Yin) Zin) Kf; Zout = (Ke Yin) Yout;

Xa = Xa  Yout; Xb = Xb  Yout; Xc = Xb  Zout; Xd = Xd  Zout; (see figure above)

Security: The designers analyzed IDEA to measure its strength against differential cryptanalysis

and concluded that it is immune under certain assumptions. No successful linear or algebraic

weaknesses have been reported. Some classes of weak keys have been found but these are of

little concern in practice, being so rare as to be unnecessary to avoid explicitly. As of 2004, the

best attack which applies to all keys can break IDEA reduced to 5 rounds (the full IDEA cipher

uses 8.5 rounds).

Modes of Operations

A mode of operation is a technique for enhancing the effect of a cryptographic algorithm or

adapting the algorithm for an application, such as applying a block cipher to a sequence of data

blocks or a data stream. The four modes are intended to cover virtually all the possible

applications of encryption for which a block cipher could be used.

1. Electronic Codebook Mode
The simplest mode is the electronic codebook (ECB) mode, in which plaintext is handled one

block at a time and each block of plaintext is encrypted using the same key The term codebook is

used because, for a given key, there is a unique ciphertext for every b-bit block of plaintext.

Therefore, we can imagine a gigantic codebook in which there is an entry for every possible b-bit

plaintext pattern showing its corresponding ciphertext.

cs
itn

ep
al

Downloaded from CSIT Tutor

Source: www.csitnepal.com (Compiled by Tej Shahi) Page 14

The ECB method is ideal for a short amount of data, such as an encryption key. Thus, if you

want to transmit a DES key securely, ECB is the appropriate mode to use. The most significant

characteristic of ECB is that the same b-bit block of plaintext, if it appears more than once in the

message, always produces the same ciphertext. For lengthy messages, the ECB mode may not be

secure. If the message is highly structured, it may be possible for a cryptanalyst to exploit these

regularities.

2. Cipher Block Chaining Mode

To overcome the security deficiencies of ECB, we would like a technique in which the same

plaintext block, if repeated, produces different ciphertext blocks. A simple way to satisfy this

requirement is the cipher block chaining (CBC) mode. In this scheme, the input to the encryption

algorithm is the XOR of the current plaintext block and the preceding ciphertext block; the same

key is used for each block. In effect, we have chained together the processing of the sequence of

plaintext blocks.

because of the chaining mechanism of CBC, it is an appropriate mode for encrypting messages

of length greater than b bits.

3. Cipher Feedback Mode

The DES scheme is essentially a block cipher technique that uses b-bit blocks. However, it is

possible to convert DES into a stream cipher, using either the cipher feedback (CFB) or the

cs
itn

ep
al

Downloaded from CSIT Tutor

Source: www.csitnepal.com (Compiled by Tej Shahi) Page 15

output feedback mode. A stream cipher eliminates the need to pad a message to be an integral

number of blocks. It also can operate in real time. Thus, if a character stream is being

transmitted, each character can be encrypted and transmitted immediately using a character-

oriented stream cipher.

One desirable property of a stream cipher is that the ciphertext be of the same length as the

plaintext. Thus, if 8-bit characters are being transmitted, each character should be encrypted to

produce a cipher text output of 8 bits. If more than 8 bits are produced, transmission capacity is

wasted.

In the figure, it is assumed that the unit of transmission is s bits; a common value is s = 8. As

with CBC, the units of plaintext are chained together, so that the ciphertext of any plaintext unit

is a function of all the preceding plaintext. In this case, rather than units of b bits, the plaintext is

divided into segments of s bits.

4. Output Feedback Mode

The output feedback (OFB) mode is similar in structure to that of CFB, as illustrated in figure.

As can be seen, it is the output of the encryption function that is fed back to the shift register in

OFB, whereas in CFB the ciphertext unit is fed back to the shift register.

cs
itn

ep
al

Downloaded from CSIT Tutor

Source: www.csitnepal.com (Compiled by Tej Shahi) Page 16

5. Counter mode

Figure depicts the CTR mode. A counter, equal to the plaintext block size is used. The only

requirement stated in SP 800-38A is that the counter value must be different for each plaintext

block that is encrypted. Typically, the counter is initialized to some value and then incremented

by 1 for each subsequent block (modulo 2b where b is the block size). For encryption, the counter

is encrypted and then XORed with the plaintext block to produce the ciphertext block; there is no

chaining. For decryption, the same sequence of counter values is used, with each encrypted

counter XORed with a ciphertext block to recover the corresponding plaintext block.

Old questions

1. How many rounds are used in AES and what does the number of rounds depend on?

2. What are the steps that go into the construction of the 16*16 S-box lookup table for AES

algorithm?

3. What are the characteristics of a stream cipher?

cs
itn

ep
al

Downloaded from CSIT Tutor

Source: www.csitnepal.com (Compiled by Tej Shahi) Page 1

Chapter 4
Public Key Cryptography

Basic Number theory

Groups

A group G, sometimes denoted by {G, ·} is a set of elements with a binary operation, denoted

by ·, that associates to each ordered pair (a, b) of elements in G an element (a · b) in G, such that

the following axioms are obeyed.]The operator · is generic and can refer to addition,

multiplication, or some other mathematical operation.

(A1) Closure: If a and b belong to G, then a · b is also in G.

(A2) Associative: a · (b · c) = (a · b) · c for all a, b, c in G.

(A3) Identity element: There is an element e in G such that a · e = e · a = a for all a in G.

(A4) Inverse element: For each a in G there is an element a' in G such that a · a' = a' · a = e.

If a group has a finite number of elements, it is referred to as a finite group, and the order of the

group is equal to the number of elements in the group. Otherwise, the group is an infinite group.

A group is said to be abelian if it satisfies the following additional condition:

(A5) Commutative: a · b = b · a for all a, b in G.

The set of integers (positive, negative, and 0) under addition is an abelian group.

Cyclic Group

We define exponentiation within a group as repeated application of the group operator, so that a3 = a · a
· a. Further, we define a0 = e, the identity element; and a-n = (a')n. A group G is cyclic if every element of
G is a power ak (k is an integer) of a fixed element a εG. The element a is said to generate the group G, or
to be a generator of G. A cyclic group is always abelian, and may be finite or infinite.

The additive group of integers is an infinite cyclic group generated by the element 1. In this case,

powers are interpreted additively, so that n is the nth power of 1.

Ring

A ring R, sometimes denoted by {R, +, x}, is a set of elements with two binary operations,

called addition and multiplication, such that for all a, b, c in R the following axioms are obeyed:

(A1-A5) R is an abelian group with respect to addition; that is, R satisfies axioms A1 through

A5. For the case of an additive group, we denote the identity element as 0 and the inverse of a as

a.

(M1) Closure under multiplication: If a and b belong to R, then ab is also in R.

(M2) Associativity of multiplication: a(bc) = (ab)c for all a, b, c in R.

cs
itn

ep
al

Downloaded from CSIT Tutor

Source: www.csitnepal.com (Compiled by Tej Shahi) Page 2

(M3) Distributive laws: a(b + c) = ab + ac for all a, b, c in R.

(a + b)c = ac + bc for all a, b, c in R.

With respect to addition and multiplication, the set of all n-square matrices over the real

numbers is a ring.

Commutative Ring

A ring is said to be commutative if it satisfies the following additional condition:

(M4) Commutativity of multiplication: ab = ba for all a, b in R.

Let S be the set of even integers (positive, negative, and 0) under the usual operations of addition

and multiplication. S is a commutative ring. The set of all n-square matrices defined in the

preceding example is not a commutative ring.

Integral Domain

we define an integral domain, which is a commutative ring that obeys the following axioms:

(M5) Multiplicative identity: There is an element 1 in R such that a1 = 1a = a for all a in R.

(M6) No zero divisors: If a, b in R and ab = 0, then either a = 0 or b = 0.

Let S be the set of integers, positive, negative, and 0, under the usual operations of addition

and multiplication. S is an integral domain.

Fields

A field F, sometimes denoted by {F, +, x}, is a set of elements with two binary operations, called

addition and multiplication, such that for all a, b, c in F the following axioms are obeyed:

(A1M6) F is an integral domain; that is, F satisfies axioms A1 through A5 and M1 through M6.

(M7) Multiplicative inverse: For each a in F, except 0, there is an element a-1 in F such that

aa-1 = (a-1)a = 1.

In essence, a field is a set in which we can do addition, subtraction, multiplication, and division

without leaving the set. Division is defined with the following rule: a/b = a(b-1).

Familiar examples of fields are the rational numbers, the real numbers, and the complex

numbers. Note that the set of all integers is not a field, because not every element of the set has

cs
itn

ep
al

Downloaded from CSIT Tutor

Source: www.csitnepal.com (Compiled by Tej Shahi) Page 3

a multiplicative inverse; in fact, only the elements 1 and -1 have multiplicative inverses in the

integers.

Modular Arithmetic

Given any positive integer n and any nonnegative integer a, if we divide a by n, we get an integer
quotient q and an integer remainder r that obey the following relationship:

a=qn+r…………………….*(1)

If a is an integer and n is a positive integer, we define a mod n to be the remainder when a is

divided by n. The integer n is called the modulus.

For example: 11 mod 7=4 and -11 mod 7 = 3

Two integers a and b are said to be congruent modulo n, if (a mod n) = (b mod n).

i.e.

Divisors

We say that a nonzero b divides a if a = mb for some m, where a, b, and m are integers. That is, b

divides a if there is no remainder on division. The notation is commonly used to mean b divides

a. Also, if b|a, we say that b is a divisor of a.

The following relations hold:

 If a|1, then a = ±1.

 If a|b and b|a, then a = ±b.

 Any b 0 divides 0.

 If b|g and b|h, then b|(mg + nh) for arbitrary integers m and n.

cs
itn

ep
al

Downloaded from CSIT Tutor

Source: www.csitnepal.com (Compiled by Tej Shahi) Page 4

Properties of Congruences

Congruences have the following properties:

1. a b (mod n) if n|(a-b).

2. a b (mod n) implies b a (mod n)..

3. a b (mod n) and b c (mod n) imply a c (mod n).

To demonstrate the first point, if n|(a b), then (a b) = kn for some k. So we can write a = b + kn.

Therefore, (a mod n) = (reminder when b + kn is divided by n) = (reminder when b is divided by

n) = (b mod n)

Modular Arithmetic Operations

Modular arithmetic exhibits the following properties:

1. [(a mod n) + (b mod n)] mod n = (a + b) mod n

2. [(a mod n) - (b mod n)] mod n = (a- b) mod n

3. [(a mod n) x (b mod n)] mod n = (a x b) mod n

Examples

11 mod 8 = 3; 15 mod 8 = 7

[(11 mod 8) + (15 mod 8)] mod 8 = 10 mod 8 = 2

(11 + 15) mod 8 = 26 mod 8 = 2

[(11 mod 8) (15 mod 8)] mod 8 = 4 mod 8 = 4

(11 15) mod 8 = 4 mod 8 = 4

[(11 mod 8) x (15 mod 8)] mod 8 = 21 mod 8 = 5

(11 x 15) mod 8 = 165 mod 8 = 5

Exponentiation is performed by repeated multiplication, as in ordinary arithmetic.

To find 117 mod 13, we can proceed as follows:

112 = 121 4 (mod 13)

114 = (112)2 42 3 (mod 13)

117 11 x 4 x 3 132 2 (mod 13)

cs
itn

ep
al

Downloaded from CSIT Tutor

Source: www.csitnepal.com (Compiled by Tej Shahi) Page 5

Arithmetic Modulo 8

Here –w is additive inverse of w and w-1 is the multiplicative inverse of w.

Define the set Zn as the set of nonnegative integers less than n
Zn={0,1,2,3,…….n-1}.

This is referred to as the set of residues, or residue classes modulo n. To be more precise, each integer in
Zn represents a residue class. We can label the residue classes modulo n as [0], [1], [2],...,[n 1], where

[r] = {a: a is an integer, a r (mod n)}

The residue classes modulo 4 are

 [0] = { ..., 16, 12, 8, 4, 0, 4, 8, 12, 16,... }

 [1] = { ..., 15, 11, 7, 3, 1, 5, 9, 13, 17,... }

 [2] = { ..., 14, 10, 6, 2, 2, 6, 10, 14, 18,... }

 [3] = { ..., 13, 9, 5, 1, 3, 7, 11, 15, 19,... }

If we perform modular arithmetic within Zn, the properties shown in Table (below) hold for integers in
Zn. Thus, Zn is a commutative ring with a multiplicative identity element.

Commutative laws (w + x) mod n = (x + w) mod n

(w x x) mod n = (x x w) mod n

Associative laws [(w + x) + y] mod n = [w + (x + y)] mod n

[(w x x) x y] mod n = [w x (x x y)] mod n

cs
itn

ep
al

Downloaded from CSIT Tutor

Source: www.csitnepal.com (Compiled by Tej Shahi) Page 6

Distributive laws [w + (x + y)] mod n = [(w x x) + (w x y)] mod n

[w + (x x y)] mod n = [(w + x) x (w + y)] mod n

Identities (0 + w) mod n = w mod n

(1 + w) mod n = w mod n

Additive inverse (-w)
For each w Zn, there exists a z such that w + z 0 mod n

Proof that Z8 is a ring

Finite Fields of Order p

For a given prime, p, the finite field of order p, GF(p) is defined as the set Zp of integers {0, 1,..., p- 1},
together with the arithmetic operations modulo p. (GF stands for Galois field)

Arithmetic in GF(7)

Finding the Multiplicative Inverse in GF(p)

It is easy to find the multiplicative inverse of an element in GF(p) for small values of p. You

simply construct a multiplication table, such as shown in Table above, and the desired result can

be read directly. However, for large values of p, this approach is not practical.

cs
itn

ep
al

Downloaded from CSIT Tutor

Source: www.csitnepal.com (Compiled by Tej Shahi) Page 7

If gcd(m, b) = 1, then b has a multiplicative inverse modulo m. That is, for positive integer b <

m, there exists a b1 < m such that bb1 = 1 mod m. The Euclidean algorithm can be extended so

that, in addition to finding gcd(m, b), if the gcd is 1, the algorithm returns the multiplicative

inverse of b.

EXTENDED EUCLID(m, b)

1. (A1, A2, A3) ←(1, 0, m); (B1, B2, B3) ←(0, 1, b)

2. if B3 = 0 return A3 = gcd(m, b); no inverse

3. if B3 = 1 return B3 = gcd(m, b); B2 = b1 mod m

4. Q=⌊

⌋

5. (T1, T2, T3) ← (A1 QB1, A2 QB2, A3 QB3)

6. (A1, A2, A3) ← (B1, B2, B3)

7. (B1, B2, B3) ← (T1, T2, T3)

8. goto 2

Exercise: trace the above algorithms for finding multiplicative inverse of 550 in GF(1759)

Prime Numbers

Prime Numbers

An integer p > 1 is a prime number if and only if its only divisors are ± 1 and ±p. Examples are 7 , 13…

Any integer a > 1 can be factored in a unique way as:

A=p1
a1

.p2
a2

……………………pt
at where p1 < p2 < ... < pt are prime numbers and where each is a positive integer.

This is known as the fundamental theorem of arithmetic. Examples are

91 = 7 x 13 (factorization)

3600 = 24 x 32 x 52

11011 = 7 x 112 x 13

Fermat’s theorem

Fermat's theorem states the following: If p is prime and a is a positive integer not divisible by p, then

ap-1=1 (mod p)

(here a and p are relatively prime)

Example

a = 7, p = 19

72 = 49 11(mod 19)

74 =72 x72 11x11=121 7(mod 19)

78 49 11(mod 19)

716 =121 =7(mod 19)

cs
itn

ep
al

Downloaded from CSIT Tutor

Source: www.csitnepal.com (Compiled by Tej Shahi) Page 8

ap1 = 718 = 716 x 72 7 x 11 1(mod 19)

 Alternative form of fermat theorem is ap=a(mod p)

Euler's Totient Function

Before presenting Euler's theorem, we need to introduce an important quantity in number theory,

referred to as Euler's totient function and written (n), defined as the number of positive integers

less than n and relatively prime to n. By convention, (1) = 1.

n (n)

1 1

3 2

13 12

14 6

15 8

19 18

20 8

If n is prime number then (n)=n-1.

Euler's theorem

Euler's theorem states that for every a and n that are relatively prime:

Examples

a = 3; n = 10; (10) = 4 a(n) = 34 = 81 1(mod 10) = 1 (mod n)

a = 2; n = 11; (11) = 10 a(n) = 210 = 1024 1(mod 11) = 1 (mod n)

An alternative form of Euler’s theorem is

Testing for Primality

cs
itn

ep
al

Downloaded from CSIT Tutor

Source: www.csitnepal.com (Compiled by Tej Shahi) Page 9

For many cryptographic algorithms, it is necessary to select one or more very large prime

numbers at random. Thus we are faced with the task of determining whether a given large

number is prime. There is no simple yet efficient means of accomplishing this task.

Miller-Rabin Algorithm

 The algorithm due to Miller and Rabin is typically used to test a large number for primality. Before

explaining the algorithm, we need some background.

First, any positive odd integer n>= 3 can be expressed as follows:

n 1 = 2kq with k > 0, q odd

Two Properties of Prime Numbers

The first property is stated as follows:

 If p is prime and a is a positive integer less than p, then a2 mod p = 1 if and only if either a mod

p = 1 or a mod p= 1 mode p = p-1. By the rules of modular arithmetic (a mode p) (a mode p) = a2

mod p. Thus if either a mode p = 1 or a mod p = 1, then a2 mod p = 1. Conversely, if a2 mod p =

1, then (a mod p)2 = 1, which is true only for a mod p = 1 or a mod p = 1.

The second property is stated as follows:

Let p be a prime number greater than 2. We can then write p 1 = 2kq, with k > 0 q odd. Let a be

any integer in the range 1 < a < p 1. Then one of the two following conditions is true:

1. aq is congruent to 1 modulo p. That is, aq mod p = 1, or equivalently, aq 1 (mod p).

2. One of the numbers aq, a2q, a4q,...,
q is congruent to 1 modulo p. That is, there is

some =number j in the range (1 <=j <<k) such that a2j-1q mod p = 1 mod p = p-1, or

equivalently, a2j-1q 1 (mod p).

Details of Miller Rubin algorithm

These considerations lead to the conclusion that if n is prime, then either the first element in the list of

residues, or remainders, (aq, a2q,..., ,
 q, ,

q) modulo n equals 1, or some element in the list

equals (n-1); otherwise n is composite (i.e., not a prime). On the other hand, if the condition is met, that

does not necessarily mean that n is prime.

For example, if n = 2047 = 23 x 89, then n 1 = 2 x 1023. Computing, 21023 mod 2047 = 1, so that 2047

meets the condition but is not prime.

We can use the preceding property to devise a test for primality. The procedure TEST takes a

candidate integer n as input and returns the result composite if n is definitely not a prime, and

the result inconclusive if n may or may not be a prime.

TEST (n)

cs
itn

ep
al

Downloaded from CSIT Tutor

Source: www.csitnepal.com (Compiled by Tej Shahi) Page 10

1. Find integers k, q, with k > 0, q odd, so that (n-1

 = 2kq);

2. Select a random integer a, 1 < a < n-1;

3. if aq mod n = 1 then return("inconclusive");

4. for j = 0 to k 1 do

5. if a2jq mod n n 1 then return("inconclusive");
6. return("composite");

Public key Cryptography: RSA

1. Public-Key Cryptosystems

A public-key encryption scheme has six ingredients:

1. Plaintext: This is the readable message or data that is fed into the algorithm as input.

2. Encryption algorithm: The encryption algorithm performs various transformations on the

plaintext.

3. Public and private keys: This is a pair of keys that have been selected so that if one is used

for encryption, the other is used for decryption. The exact transformations performed by the

algorithm depend on the public or private key that is provided as input.

4. Ciphertext: This is the scrambled message produced as output. It depends on the plaintext

and the key. For a given message, two different keys will produce two different ciphertexts.

5. Decryption algorithm: This algorithm accepts the ciphertext and the matching key and

produces the original plaintext.

cs
itn

ep
al

Downloaded from CSIT Tutor

Source: www.csitnepal.com (Compiled by Tej Shahi) Page 11

1.1 Public-Key Cryptosystem for Secrecy

There is some source A that produces a message in plaintext, X =[X1, X2,..., XM,]. The M elements of X

are letters in some finite alphabet. The message is intended for destination B. B generates a related pair of

keys: a public key, PUb, and a private key, PUb. PUb is known only to B, whereas PUb is publicly

available and therefore accessible by A. this is shown in figure next page.

With the message X and the encryption key PUb as input, A forms the ciphertext Y = [Y1, Y2,...,

YN]:

Y = E(PUb, X)

The intended receiver, in possession of the matching private key, is able to invert the

transformation:

X = D(PRb, Y)

cs
itn

ep
al

Downloaded from CSIT Tutor

Source: www.csitnepal.com (Compiled by Tej Shahi) Page 12

1.2 Public-Key Cryptosystem: Authentication

In this case, A prepares a message to B and encrypts it using A's private key before transmitting it. B can

decrypt the message using A's public key. Because the message was encrypted using A's private key, only

A could have prepared the message. Therefore, the entire encrypted message serves as a digital signature.

In addition, it is impossible to alter the message without access to A's private key, so the message is

authenticated both in terms of source and in terms of data integrity. Figure show the use of public-key
encryption to provide authentication:

Y = E(PRa, X)

Y = E(PUa, Y)

1.3 Public-Key Cryptosystem: Authentication and Secrecy

It is, however, possible to provide both the authentication function and confidentiality by a

double use of the public-key scheme:

Z = E(PUb, E(PRa, X))

X = D(PUa, E(PRb, Z))

cs
itn

ep
al

Downloaded from CSIT Tutor

Source: www.csitnepal.com (Compiled by Tej Shahi) Page 13

In this case, we begin as before by encrypting a message, using the sender's private key. This

provides the digital signature. Next, we encrypt again, using the receiver's public key. The final

ciphertext can be decrypted only by the intended receiver, who alone has the matching private

key. Thus, confidentiality is provided. The disadvantage of this approach is that the public-key

algorithm, which is complex, must be exercised four times rather than two in each

communication.

Requirements for Public-Key Cryptography

1. It is computationally easy for a party B to generate a pair (public key PUb, private key PRb).

2. It is computationally easy for a sender A, knowing the public key and the message to be

encrypted, M, to generate the corresponding ciphertext:

C = E(PUb, M)

3. It is computationally easy for the receiver B to decrypt the resulting ciphertext using the

private key to recover the original message:

M = D(PRb, C) = D[PRb, E(PUb, M)]

4. It is computationally infeasible for an adversary, knowing the public key, PUb, to determine

the private key, PRb.

5. It is computationally infeasible for an adversary, knowing the public key, PUb, and a

ciphertext, C, to recover the original message, M.

We can add a sixth requirement that, although useful, is not necessary for all public-key

applications:

6. The two keys can be applied in either order:

cs
itn

ep
al

Downloaded from CSIT Tutor

Source: www.csitnepal.com (Compiled by Tej Shahi) Page 14

M = D[PUb, E(PRb, M)] = D[PRb, E(PUb, M)]

There are three families of Public-Key (PK) algorithms of practical relevance:

1. Integer factorization algorithms (RSA, ...)

2. Discrete logarithms (Diffie-Hellman, DSA, ...)

3. Elliptic curves (EC)

In this lecture we only consider Algorithms of family i.e. Integer Factorization Algorithm and

Discrete Logarithms.

1. The RSA Algorithm

RSA is an algorithm for public-key cryptography. It was the first algorithm known to be suitable

for signing as well as encryption, and one of the first great advances in public key cryptography.

RSA is widely used in electronic commerce protocols, and is believed to be secure given

sufficiently long keys and the use of up-to-date implementations.

Operation: RSA involves a public key and a private key. The public key can be known to

everyone and is used for encrypting messages. Messages encrypted with the public key can only

be decrypted using the private key.

RSA Key Generation:

1. Choose two distinct large random prime numbers p and q

2. Compute n = pq, n is used as the modulus for both the public and private keys

3. Compute the totient: φ(n) = (p − 1)(q − 1).

4. Choose an integer e such that 1 < e < φ(n), and e and φ(n) share no factors other than 1

i.e. e and φ(n) are relatively prime)

5. e is released as the public key exponent

6. Compute d to satisfy the congruence relation ed ≡ 1 mod φ(n); i.e. de = 1 + kφ(n) for

some integer k.

7. d is kept as the private key exponent

Notes on the above steps: Step 1: Numbers can be probabilistically tested for primality.

cs
itn

ep
al

Downloaded from CSIT Tutor

Source: www.csitnepal.com (Compiled by Tej Shahi) Page 15

Step 4: A popular choice for the public exponents is e = 216 + 1 = 65537. Some applications

choose smaller values such as e = 3, 5, 17 or 257 instead. This is done to make encryption and

signature verification faster.

Steps 4 and 5 can be performed with the extended Euclidean algorithm;

Encrypting Messages

Alice transmits her public key (n, e) to Bob and keeps the private key secret. Bob send message

M to Alice by turning M into a number m < n by using a reversible protocol called a padding

scheme. He then computes the ciphertext c as: c = me mod n. Bob then transmits c to Alice.

Decrypting Messages

Alice can recover m from c by using her private key exponent d by the following computation:

m = cd mod n. Given m, she can recover the original message M.

Example: Consider, p = 61 and q = 53 now, compute n = pq = 61 * 53 = 3233

Compute the totient φ(n) = (p − 1)(q − 1) = (61-1)(53-1) = 3120

Choose e > 1 relatively prime to 3120; e = 17

Compute d such that ed ≡ 1 mod φ(n) e.g., by computing the modular multiplicative inverse of e

modulo φ(n): d = 2753 since 17 * 2753 = 46801 = 1 + 15 * 3120.

The public key is (n = 3233, e = 17).

For a padded message m the encryption function is:

c = me mod n = m17 mod 3233.

The private key is (n = 3233, d = 2753). The decryption function is:

m = cd mod n = c2753 mod 3233.

For example, to encrypt m = 123, we calculate

c = 12317 mod 3233 = 855 to decrypt c = 855, we calculate m = 8552753 mod 3233 = 123

Both of these calculations can be computed efficiently using the square-and-multiply algorithm

for modular exponentiation.

One More Example:

Consider primes p=11, q=3. Now, compute n = pq = 11.3 = 33 and

totient φ(n) = (p-1)(q-1) = 10.2 = 20 .

cs
itn

ep
al

Downloaded from CSIT Tutor

Source: www.csitnepal.com (Compiled by Tej Shahi) Page 16

Choose e=3; Check gcd(e, φ(n)) = gcd(3, 20) = 1 (i.e. 3 and 20 have no common factors except

1),

Compute d such that ed ≡ 1 (mod φ(n))

i.e. find a value for d such that φ(n) divides (ed-1)

i.e. find d such that 20 divides 3d-1.

Simple testing (d = 1, 2, ...) gives d = 7

Check: ed-1 = 3.7 - 1 = 20, which is divisible by φ(n)

Public key = (n, e) = (33, 3)

Private key = (n, d) = (33, 7).

This is actually the smallest possible value for the modulus n for which the RSA algorithm

works. Now say we want to encrypt the message m = 7,

c = me mod n = 73 mod 33 = 343 mod 33 = 13.

Hence the ciphertext c = 13. To check decryption we compute m' = cd mod n = 137 mod 33 = 7.

2. Diffie-Hellman Key Exchange

Diffie-Hellman (D-H) key exchange is a cryptographic protocol that allows two parties that have

no prior knowledge of each other to jointly establish a shared secret key over an insecure

communications channel. This key can then be used to encrypt subsequent communications

using a symmetric key cipher. Other names for Diffie-Hellman Key Exhange are Diffie-Hellman

Key Agreement, Diffie-Hellman Key Establishment, Diffie-Hellman Key Negotiation,

Exponential Key Exchange.

Description: The simplest and original implementation of the protocol uses the multiplicative

group of integers modulo p, where p is a prime and g is primitive root of p.

Steps:

1. Generate the global public elements p and g, where p is a prime number and g < p is a

primitive root of p.

2. User A selects a random integer number XA<p, and computes YA = g
X

A mod p.

3. User B independently selects a random integer XB<p, and computes

YB = g
X

B mod p.

4. Each side keeps the X value private and makes the Y value available publicly to the other

side.

5. User A generates secret key as K = (Y
B
)X

A mod p.

The notation ‘a ≡ b (mod n)’

means a and b have the same

remainder when divided by n, or,

equivalently,

 a − b = nk for some integer k

cs
itn

ep
al

Downloaded from CSIT Tutor

Source: www.csitnepal.com (Compiled by Tej Shahi) Page 17

6. User B generates secret key as K = (Y
A
)X

B mod p

Why the key from both side same:

From user A, K = (Y
B
)X

A mod p = (g
X

B mod p)
X

A mod p= (g
X

B)
X

A mod p= g
X

BX
A mod p

From user B, K = (Y
A
)X

B mod p = (g
X

A mod p)
X

B mod p= (g
X

A)
X

B mod p= g
X

BX
A mod p

See above both the results are same.

Example: Alice and Bob agree to use a prime number p=23 and base g=5.

Alice chooses a secret integer XA =6, then sends Bob (YA = g
X

A mod p):56 mod 23 = 8.

Bob chooses a secret integer XB =15, then sends Alice (YB = g
X

B mod p):515 mod 23= 19.

Alice computes (Y
B
)X

A mod p: 196 mod 23 = 2 and Bob computes (Y
A
)X

B mod p: 815 mod 23 =

2.

Once Alice and Bob compute the shared secret they can use it as an encryption key, known only to them,

for sending messages across the same open communications channel. Of course, much larger values of

XA, XB, and p would be needed to make this example secure, since it is easy to try all the possible values

of g
X

A
XB mod 23 (there will be, at most, 22 such values, even if XA, XB are large). If p were a prime of at

least 300 digits, and XA, XB were at least 100 digits long, then even the best algorithms known today

could not find a given only g, p, and g
X

A mod p, even using all of mankind's computing power. The

problem is known as the discrete logarithm problem. Note that g need not be large at all, and in practice

is usually either 2 or 5.

cs
itn

ep
al

Downloaded from CSIT Tutor

Source: www.csitnepal.com (Compiled by Tej Shahi) Page 1

Chapter 5

Digital Signatures

Digital Signatures

A digital signature or digital signature scheme is a type of asymmetric cryptography used to

simulate the security properties of a handwritten signature on paper. Digital signature schemes

normally give two algorithms, one for signing which involves the user's secret or private key,

and one for verifying signatures which involves the user's public key. The output of the signature

process is called the "digital signature."

A signature provides authentication of a "message". Messages may be anything, from electronic

mail to a contract, or even a message sent in a more complicated cryptographic protocol. Digital

signatures are used to create public key infrastructure (PKI) schemes in which a user's public key

(whether for public-key encryption, digital signatures, or any other purpose) is tied to a user by a

digital identity certificate issued by a certificate authority. PKI schemes attempt to unbreakably

bind user information (name, address, phone number, etc.) to a public key, so that public keys

can be used as a form of identification.

A digital signature scheme typically consists of three algorithms:

A key generation algorithm G, that randomly produces a "key pair" (PK, SK) for the

signer. PK is the verifying key, which is to be public, and SK is the signing key, to be

kept private.

A signing algorithm S, that, on input of a message m and a signing key SK, produces a

signature σ.

A signature verifying algorithm V, which on input a message m, a verifying key PK,

and a signature σ, either accepts or rejects.

Required Properties of Digital Signature Schemes

Two main properties are required. First, signatures computed honestly should always verify.

That is, V should accept (m, PK, S (m, SK)) where SK is the secret key related to PK, for any

message m. Secondly, it should be hard for any adversary, knowing only PK, to create valid

signature(s)

cs
itn

ep
al

Downloaded from CSIT Tutor

Source: www.csitnepal.com (Compiled by Tej Shahi) Page 2

Generally hashes are used in digital signature scheme due to the following reasons:

For efficiency: The signature will be much shorter and thus save time since hashing is

generally much faster than signing in practice.

For compatibility: Messages are typically bit strings, but some signature schemes

operate on other domains (such as, in the RSA, numbers modulo a number N). A hash

function can be used to convert an arbitrary input into the proper format.

For integrity: Without the hash function, the text to be signed may split in many blocks

for the signature scheme to act on them. However, the receiver of the signed blocks is not

able to recognize if all the blocks are not present and not in the appropriate order.

Benefits of digital signatures

- Authentication: Digital signatures can be used to authenticate the source of messages. When

ownership of a digital signature secret key is bound to a specific user, a valid signature shows

that the message was sent by that user. For example, suppose a bank's branch office sends

instructions to the central office requesting a change in the balance of an account. If the central

office is not convinced that such a message is truly sent from an authorized source, acting on

such a request could be a grave mistake.

- Integrity: In many cases, the sender and receiver of a message may have a need for trust that

the message has not been altered during transmission. Although encryption hides the contents of

a message, it may be possible to change an encrypted message

without understanding it. However, if a message is digitally signed, any change in the message

will invalidate the signature. Furthermore, there is no efficient way to modify a message and its

signature to produce a new message with a valid signature, because this is still considered to be

computationally infeasible by most cryptographic hash functions.

Drawbacks of digital signatures

-Trusted Time Stamping: Digital signature algorithms and protocols do not inherently provide

certainty about the date and time at which the underlying document was signed. The signer

might, or might not, have included a time stamp with the signature, or the document itself might

cs
itn

ep
al

Downloaded from CSIT Tutor

Source: www.csitnepal.com (Compiled by Tej Shahi) Page 3

have a date mentioned on it, but a later reader cannot be certain the signer did not, for instance,

backdate the date or time of the signature.

- Non-repudiation: The word repudiation refers to any act of disclaiming responsibility for a

message. A message's recipient may insist the sender attach a signature in order to make later

repudiation more difficult, since the recipient can show the signed message to a third party (eg, a

court) to reinforce a claim as to its signatories and integrity. However, loss of control over a

user's private key will mean that all digital signatures using that key, and so ostensibly 'from' that

user, are suspect. Nonetheless, a user cannot repudiate a signed message without repudiating

their signature key. It is aggravated by the fact there is no trusted time stamp, so new documents

(after the key compromise) cannot be separated from old ones, further complicating signature

key invalidation. Certificate Authorities usually maintain a public repository of public-key so the

association user-key is certified and signatures cannot be repudiated. Expired certificates are

normally removed from the directory. It is a matter for the security policy and the responsibility

of the authority to keep old certificates for a period of time if a non-repudiation of data service is

provided.

Digital Signatures Schemes

- RSA

Basic RSA signatures are computed as follows:

– To generate RSA signature keys, one simply generates an RSA key pair. See RSA

encryption fro Key generation mechanism.

– To sign a message m, the signer computes σ =md mod n. To verify, the receiver checks

that σe = m mod n. where (e, n) is the public key and (d, n) is the private key.

This scheme is not very secure. To prevent attacks, one can first get a message digest of the

message m and then apply the RSA algorithm described above to the result.

Signing Messages: Suppose Alice wishes to send a signed message (m) to Bob. She can use her

own private key (d, n) to do so. She produces a hash value of the message (h(m)), find (h(m))d

mod n (as she does when decrypting a message), and attaches it as a "signature" to the message.

When Bob receives the signed message, he uses the same hash algorithm in conjunction with

Alice's public key (e, n). He raises the ((h(m))d mod n)e mod n (as he does when encrypting a

message), and compares the resulting hash value with the message's actual hash value. If the two

cs
itn

ep
al

Downloaded from CSIT Tutor

Source: www.csitnepal.com (Compiled by Tej Shahi) Page 4

agree, he knows that the author of the message was in possession of Alice's secret key, and that

the message has not been tampered with since.

- ElGamal Signature Scheme

The ElGamal signature scheme is based on the difficulty of computing discrete logarithms. The

ElGamal signature algorithm is rarely used in practice. A variant developed at NSA and known

as the Digital Signature Algorithm is much more widely used. The ElGamal signature scheme

allows that a verifier can confirm the authenticity of a message m sent by the signer sent to him

over an insecure channel.

Description: This scheme requires the following parameters and procedures:

A long term public/private keys where public key is (g, p, T) and private key S such that gS mod

p = T.

New Different public/private key pair for each message being signed. If message is m, choose

random number Sm and find gSm mod p = Tm.

Signing Process:

Take the well known message digest (hash) function, say H. Using this hash function

calculate message digest dm of m|Tm i.e. find dm = H(m|Tm).

Calculate signature X = Sm + dmS mod (p-1).

Signer sends message m along with X and Tm. since the receiver knows m and Tm,

Verifying Process:

Calculate dm using obtained m and Tm.

Check whether gX = TmTdm mod p. If this is true the signature is valid, else not valid.

This is true since gX = g Sm + dmS = g Sm g dmS =TmTdm mod p.

Security: A third party can forge signatures either by finding the signer's secret key x or by

finding collisions in the hash function. Both problems are believed to be difficult. The signer

must be careful to choose a different k uniformly at random for each signature and to be certain

that k, or even partial information about k, is not leaked. Otherwise, an attacker may be able to

deduce the secret key x with reduced difficulty, perhaps enough to allow a practical attack. In

cs
itn

ep
al

Downloaded from CSIT Tutor

Source: www.csitnepal.com (Compiled by Tej Shahi) Page 5

particular, if two messages are sent using the same value of k and the same key, then an attacker

can compute x directly.

Digital Signature Standard

The National Institute of Standards and Technology (NIST) has published Federal Information

Processing Standard FIPS 186, known as the Digital Signature Standard (DSS). The DSS makes

use of the Secure Hash Algorithm (SHA) described in later chapter and presents a new digital

signature technique, the Digital Signature Algorithm (DSA). The DSS was originally proposed in

1991 and revised in 1993 in response to public feedback concerning the security of the scheme.

There was a further minor revision in 1996. In 2000, an expanded version of the standard was

issued as FIPS 186-2. This latest version also incorporates digital signature algorithms based on

RSA and on elliptic curve cryptography. In this section, we discuss the original DSS algorithm.

Two Approaches to Digital Signatures (Revisited)

In the RSA approach, the message to be signed is input to a hash function that produces a

secure hash code of fixed length. This hash code is then encrypted using the sender's private key

to form the signature. Both the message and the signature are then transmitted. The recipient

takes the message and produces a hash code. The recipient also decrypts the signature using the

sender's public key. If the calculated hash code matches the decrypted signature, the signature is

accepted as valid. Because only the sender knows the private key, only the sender could have

produced a valid signature.

The DSS approach also makes use of a hash function. The hash code is provided as input to a

signature function along with a random number k generated for this particular signature. The

signature function also depends on the sender's private key (PRa)and a set of parameters known

to a group of communicating principals. We can consider this set to constitute a global public

key (PUG).The result is a signature consisting of two components, labeled s and r. At the

receiving end, the hash code of the incoming message is generated. This plus the signature is

input to a verification function. The verification function also depends on the global public key

as well as the sender's public key (PUa), which is paired with the sender's private key. The output

of the verification function is a value that is equal to the signature component r if the signature is

cs
itn

ep
al

Downloaded from CSIT Tutor

Source: www.csitnepal.com (Compiled by Tej Shahi) Page 6

valid. The signature function is such that only the sender, with knowledge of the private key,

could have produced the valid signature.

The Digital Signature Algorithm

Global Public-Key Components

p
prime number where 2L 1 < p < 2L for 512 L 1024 and L a multiple of 64; i.e., bit

length of between 512 and 1024 bits in increments of 64 bits

q prime divisor of (p 1), where 2159 < q < 2160; i.e., bit length of 160 bits

g = h(p 1)/q mod p, where h is any integer with 1 < h < (p 1) such that h(p 1)/q mod p > 1

User's Private Key

x random or pseudorandom integer with 0 < x < q

User's Public Key

y = gx mod p

User's Per-Message Secret Number

k = random or pseudorandom integer with 0 < k < q

Signing

r = (gk mod p) mod q

s = [k-1 (H(M) + xr)] mod q

Signature = (r, s)

Verifying

w = (s')-1 mod q

u1 = [H(M')w] mod q

cs
itn

ep
al

Downloaded from CSIT Tutor

Source: www.csitnepal.com (Compiled by Tej Shahi) Page 7

u2 =(r')w mod q

v = [(gu 1 yu 2) mod p] mod q

TEST: v = r'

M = message to be signed

H(M) = hash of M using SHA-1

M', r',

s'

= received versions of M, r, s

The following figure depicts the functions of signing and verifying.

cs
itn

ep
al

Downloaded from CSIT Tutor

Source: www.csitnepal.com (Compiled by Tej Shahi) Page 1

Chapter 6

Hashing and Message Digests

Hash Function

A hash value h is generated by a function H of the form

h = H(M)

where M is a variable-length message and H(M) is the fixed-length hash value. The hash value is

appended to the message at the source at a time when the message is assumed or known to be

correct. The receiver authenticates that message by recomputing the hash value. Because the

hash function itself is not considered to be secret, some means is required to protect the hash

value

Requirements for a Hash Function

The purpose of a hash function is to produce a "fingerprint" of a file, message, or other block of

data. To be useful for message authentication, a hash function H must have the following

properties:

1. H can be applied to a block of data of any size.

2. H produces a fixed-length output.

3. H(x) is relatively easy to compute for any given x, making both hardware and software

implementations practical.

4. For any given value h, it is computationally infeasible to find x such that H(x) = h. This is

sometimes referred to in the literature as the one-way property.

5. For any given block x, it is computationally infeasible to find y x such that H(y) = H(x).

This is sometimes referred to as weak collision resistance.

6. It is computationally infeasible to find any pair (x, y) such that H(x) = H(y). This is

sometimes referred to as strong collision resistance.

Cryptographic Hash Function

A cryptographic hash function is a transformation that takes an input and returns a fixed-size

string, which is called the hash value. The hash value is a concise representation of the longer

message or document from which it was computed. The message digest is a sort of "digital

fingerprint" of the larger document. Cryptographic hash functions are used to do message

integrity checks and digital signatures in various information security applications, such as

authentication and message integrity.

cs
itn

ep
al

Downloaded from CSIT Tutor

Source: www.csitnepal.com (Compiled by Tej Shahi) Page 2

Hash functions are an important type of cryptographic algorithms and are widely used in

cryptography such as digital signature, data authentication, e-cash and many other applications.

Hash functions are at work in the millions of transactions that take place on the internet every

day. The purpose of the use of hash functions in many cryptographic protocols is to ensure their

security as well as improve their efficiency. The most widely used hash functions are dedicated

hash functions such as MD5 and SHA-1.

A cryptographic hash function should behave as much as possible like a random function while

still being deterministic and efficiently computable. A cryptographic hash function is considered

insecure if either of the following is computationally feasible:

Finding a (previously unseen) message that matches a given digest

Finding "collisions", wherein two different messages have the same message digest.

An attacker who can do either of these things might, for example, use them to substitute an

unauthorized message for an authorized one.

Ideally, it should not even be feasible to find two messages whose digests are substantially

similar; nor would one want an attacker to be able to learn anything useful about a message

given only its digest. Of course the attacker learns at least one piece of information, the digest

itself, which for instance gives the attacker the ability to recognize the same message should it

occur again.

A hash function must be able to process an arbitrary-length message into a fixed-length output.

This can be achieved by breaking the input up into a series of equal-sized blocks, and operating

on them in sequence using a one-way compression function. The compression function can either

be specially designed for hashing or be built from a block cipher.

There is no formal definition which captures all of the properties considered desirable for a

cryptographic hash function. These properties below are generally considered prerequisites:

Preimage resistant: given h it should be hard to find any m such that h = hash(m). Second

preimage resistant: given an input m1, it should be hard to find another input, m2 (not equal to

m1) such that hash(m1) = hash(m2).

Applications

cs
itn

ep
al

Downloaded from CSIT Tutor

Source: www.csitnepal.com (Compiled by Tej Shahi) Page 3

Message Integrity Verification: Determining whether any changes have been made to a

message (or a file), for example, can be accomplished by comparing message digests calculated

before, and after, transmission (or any other event).

Password Verification: Passwords are usually not stored in cleartext, for obvious reasons, but

instead in digest form. To authenticate a user, the password presented by the user is hashed and

compared with the stored hash. This is sometimes referred to as one-way encryption.

Digital Signatures: while generating digital signatures, the message digest is created and it is

encrypted with the private key so that the signing process becomes faster.

Massage Digest Algorithms

1. MD 4 (Message Digest 4)

MD 4 Algorithm is a cryptographic hash function developed by Ronald Rivest in 1990. It

produces 128 bits (four 32 bits words) message digest and is optimized for 32-bit computers.

Operations

Step 1: MD4 Message Padding

The message to be processed by MD4 computation must be multiple of 512 bits (16 32-bit

words). The original message is padded by adding 1 followed by required number of 0s so that

the length of the message is 64 bits less than multiple of 512. The remaining 64 bits is used for

providing length of the original message i.e. unpadded message.

Step 2: MD4 Message Digest Computation

MD4 processes message in 512 bits (16 32 bits words) each time. At first message digest is

initialized to a fixed value and then each stage of the algorithm takes current value of message

digest and modifies it using the next block of message. The function producing 128 bits output

from the 512 bits block is called compression function. Each stage makes three passes with

different methods of mangling for each pass. Each word of mangled message digest is added to

Original Message 1000……………..000

.
Original length in bits 64 bits

cs
itn

ep
al

Downloaded from CSIT Tutor

Source: www.csitnepal.com (Compiled by Tej Shahi) Page 4

its pre-stage value to produce post-stage value that becomes the pre-stage value for the next

stage.

Each stage starts with 16-words message block and 4-words message digest values. Say message

words as m0, m1, …m15 and message digest words as d0, d1, d2,d3 with initial values d0 =

6745230116, d1 = efcdab8916, d2 = 98badcfe16, d3 = 1032547616, these numbers seems to be

random but are initialized to the following values in hexadecimal, low-order bytes first 01 23 45

67 89 ab cd ef fe dc ba 98 76 54 32 10.

Each pass modifies d0, d1, d2, d3 using m0, m1, … m15 with the following operations.

– floor(x): the greatest integer not greater than x.

– ~x: bitwise complement of 32 bits quantity x.

– x  y/ x  y/ x  y: bitwise AND/OR/XOR of 32 bits quantities x and y.

– x + y: bitwise binary sum of 32 bits quantities x and y with carry discarded.

– x  y: called left rotate generates 32 bits quantity by shifting bit position of x to the left by y

times. The shifted bits occupy the right position.

Pass 1: This pass uses the selection function [F(x, y, z) = (x  y)  (~x  z)] that takes three 32

bits words as input and produced a 32 bits output. This function’s output depending upon nth bits

of x since it selects nth bit of y if nth bit of x is 1, otherwise it selects nth bit of z. Each of the 16

words of the messages is separately processed using the following relation, where i goes from 0

to 15.

d(-i)  3 = (d(-i)  3 + F(d(1-i)  3, d(2-i)  3, d(3-i)  3) + mi)  S1(i  3), where S1(i) = 3 + 4i so s cycles

over the values 3, 7, 11, 15.

The above relation’s “ 3” signifies that only the bottom two bits are used since bitwise AND

with 112 changes last two bits. In our relation (-i)  3 gives us cycle 0, 3, 2, 1, 0, similarly (1-i) 

3 gives 1, 0, 3, 2, 1; (2-i)  3 gives 2, 1, 0, 3, 2; and so on. So expanding the above relation we

get first few steps as:

d0 = (d0 + F(d1, d2, d3) + m0)  3;

d3 = (d3 + F(d0, d1, d2) + m1)  7;

d2 = (d2 + F(d3, d0, d1) + m2)  11;

d1 = (d1 + F(d2, d3, d0) + m3)  15;

cs
itn

ep
al

Downloaded from CSIT Tutor

Source: www.csitnepal.com (Compiled by Tej Shahi) Page 5

d0 = (d0 + F(d1, d2, d3) + m4)  3; and so on.

Pass 2: This pass uses majority function [G(x, y, z) = (x  y)  (x  z)  (y  z)] that takes

three 32 bits words gives a 32 bits output. The function’s output of nth bit is 1 if and only if any

two of the three input’s nth bits are 1. In this pass we introduce one strange constant floor(2302)

= 5a82799916. Each of the 16 words of the messages is separately processed, not in order, using

the following relation, where i goes from 0 to 15.

d(-i)  3 = (d(-i)  3 + G(d(1-i)  3, d(2-i)  3, d(3-i)  3) + mX(i) + 5a82799916)  S2(i  3), where X(i) is 4-

bits number formed by exchanging the low order and high order pairs of bits in 4-bits number i

[so, X(i) = 4i – 15floor(i/4)], and S2(0) = 3, S2(1) = 5, S2(2) = 9, S2(3) = 13, so s cycles over

the values 3, 5, 9, 13.

d0 = (d0 + G(d1, d2, d3) + m0 + 5a82799916)  3;

d3 = (d3 + G(d0, d1, d2) + m4 + 5a82799916)  5;

d2 = (d1 + G(d3, d0, d1) + m8 + 5a82799916)  9;

d1 = (d1 + G(d2, d3, d1) + m12 + 5a82799916)  13;

d0 = (d0 + G(d1, d2, d3) + m1 + 5a82799916)  3; and so on.

Pass 3: This pass uses the function [H(x, y, z) = x  y  z] that takes three 32 bits words gives a

32 bits output. In this pass a different strange constant floor(2303) = 6ed9eba116. Each of the 16

words of the messages is separately processed, not in order, using the following relation, where i

goes from 0 to 15.

d(-i)  3 = (d(-i)  3 + H(d(1-i)  3, d(2-i)  3, d(3-i)  3) + mR(i) + 6ed9eba116)  S3(i  3), where X(i) is 4-

bits number formed by reversing the order of bits in 4-bits number i [so, R(i) = 8i – 12floor(i/2)

– 6floor(i/4) - 3floor(i/8)], and S3(0) = 3, S3(1) = 9, S3(2) = 11, S3(3) = 15, so s cycles over

the values 3, 9, 11, 15.

d0 = (d0 + H(d1, d2, d3) + m0 + 6ed9eba116)  3;

d3 = (d3 + H(d0, d1, d2) + m8 + 6ed9eba116)  9;

d2 = (d1 + H(d3, d0, d1) + m4 + 6ed9eba116)  11;

d1 = (d1 + H(d2, d3, d1) + m12 + 6ed9eba116)  15;

d0 = (d0 + H(d1, d2, d3) + m2 + 6ed9eba116)  3; and so on.

cs
itn

ep
al

Downloaded from CSIT Tutor

Source: www.csitnepal.com (Compiled by Tej Shahi) Page 6

MD 5 (Message Digest 5)

MD5 was designed by Ron Rivest in 1991 to replace an earlier hash function, MD4. MD5 is a

widely used hash function with a 128-bit hash value. An MD5 hash is typically expressed as a

sequence of 32 hexadecimal digits.

Differences Between MD4 and MD5

– A fourth pass has been added.

– Each step now has a unique additive constant (Ti), so there are 64 constants.

– The function G in pass 2 was changed from ((x  y)  (x  z)  (y  z)) to ((x  z)

 (y  ~z)) to make g less symmetric.

– Each step now adds in the result of the previous step. This promotes a faster "avalanche

effect".

– The order in which input words are accessed in passes 2 and 3 is changed, to make these

patterns less like each other.

– The shift amounts in each pass have been approximately optimized, to yield a faster

"avalanche effect." The shifts in different passes are distinct.

MD2, MD4, and MD5 Hashes

The 128-bit (16-byte) MD2, MD4, and MD5 hashes (also termed message digests) are typically

represented as 32-digit hexadecimal numbers. The following demonstrates a 43-byte ASCII input

and the corresponding MD2 hash:

 MD2("The quick brown fox jumps over the lazy dog")

 = 03d85a0d629d2c442e987525319fc471

MD4("The quick brown fox jumps over the lazy dog")

 = 1bee69a46ba811185c194762abaeae90

MD5("The quick brown fox jumps over the lazy dog")

 = 9e107d9d372bb6826bd81d3542a419d6

cs
itn

ep
al

Downloaded from CSIT Tutor

Source: www.csitnepal.com (Compiled by Tej Shahi) Page 7

Even a small change in the message will (with overwhelming probability) result in a completely

different hash, due to the avalanche effect. For example, changing d to c:

 MD2("The quick brown fox jumps over the lazy cog")

 = 6b890c9292668cdbbfda00a4ebf31f05

MD4("The quick brown fox jumps over the lazy cog")

 = b86e130ce7028da59e672d56ad0113df

MD5("The quick brown fox jumps over the lazy cog")

 = 1055d3e698d289f2af8663725127bd4b

The hash of the zero-length string is:

 MD2("") = 8350e5a3e24c153df2275c9f80692773

MD4("") = 31d6cfe0d16ae931b73c59d7e0c089c0

MD5("") = d41d8cd98f00b204e9800998ecf8427e

Secure Hash Standard (SHS)

The Secure Hash Standard (SHS) is a set of cryptographically secure hash algorithms specified

by the National Institute of Standards and Technology. The SHS standard specifies a number of

Secure Hash Algorithms (SHA), for example SHA-1, SHA-256 and SHA-512.

SHA-1 (Secure Hash Algorithm 1)

When a message of length < 264 bits is input, the SHA produces a 160-bit representation of the

message called the message digest. The SHA is designed to have the following properties: it is

computationally infeasible to recover a message corresponding to a given message digest, or to

find two different messages which produce the same message digest.

Operations

 Step 1: Message Padding

The padding is same as that of MD4 or MD5 except that the length of the message is not longer

than 264 bits.

Step 2: SHA-1 Message Digest Computation

cs
itn

ep
al

Downloaded from CSIT Tutor

Source: www.csitnepal.com (Compiled by Tej Shahi) Page 8

SHA-1 processes message in 512 bits each time where it mangles the current message block

using pre-stage message digest and sequence of operations. Each word of mangled message

digest is added to its pre-stage value to produce post-stage value that becomes the pre-stage

value for the next stage. Initial values for five 32 bits message digest words are: A = 6745230116,

B = efcdab8916, C = 98badcfe16, D = 1032547616, E = c3d2e1f016.

SHA-1 operations on a 512-bits block (see figure above): At each stage, the 512-bits message

block is used to create 5512-bits chunk. The first 512 bits is the actual message block and the

rest chunks are filled 32 bits at a time using a rule: nth word (starts from 16, since 0-15 are for

actual message block) is the left rotation (this rotation differs SHA-1 from SHA) of  of words

(n-3), (n-8), (n-14), and (n-16). Now, we have the buffer of 80 32 bits words, lets denote them by

W0, W1, …, W79. here as from the above discussion we can find nth 32 bits word Wn as: Wn =

(Wn-3  Wn-8  Wn-14  Wn-16)

The change of A, B, C, D, and E are done as: for t = 0 to 79, B = old A; C = old B  30; D = old

C; E = old D; A = E + (A  5) + Wt + Kt + f(t,B,C,D); Here at first A is calculated using old

values of A, B, C, D, E (complicated function) and other calculations for B, C, D, and E are

done. In the calculation of A, Wt is the tth 32 bits word block and Kt is the constant depending

upon the value of t given by the following relations:

Kt = floor(2302) = 5a82799916 if 0  t  19.

Kt = floor(2303) = 6ed9eba116 if 20  t  39.

Kt = floor(2305) = 8f1bbcdc16 if 40  t  59.

 1
in revised
version

Generated

data

A B C D E

complicated

function

A B C D E

160 bits intermediate MD value

 30

cs
itn

ep
al

Downloaded from CSIT Tutor

Source: www.csitnepal.com (Compiled by Tej Shahi) Page 9

Kt = floor(23010) = ca62c1d616 if 60  t  79.

Again f(t,B,C,D) is a function that varies according to the following relations:

f(t,B,C,D) = (B  C)  (~B  D) if 0  t  19.

f(t,B,C,D) = B  C  D if 20  t  39.

f(t,B,C,D) = (B  C)  (B  D)  (C  D) if 40  t  59.

f(t,B,C,D) = B  C  D if 60  t  79.

cs
itn

ep
al

Downloaded from CSIT Tutor

Source: www.csitnepal.com (Compiled by Tej Shahi) Page 1

Chapter 7

Authentication and Public Key Infrastructure (PKI)

Key management

Key management refers to the distribution of cryptographic keys; the mechanisms used to bind

an identity to a key; and the generation, maintenance, and revoking of such keys. Here we

assume that the key gives us the true identity. So in our consideration we assume that we already

have authentication and the key has been assigned to the user. In this chapter we discuss the

following concepts: Key exchange: Session vs. interchange keys; Classical, public key methods;

Key generation. Cryptographic key infrastructure: Certificates. Key storage: Key escrow;

Key revocation.

Notation

– X  Y : { Z || W } kX,Y: X sends Y the message produced by concatenating Z and W

enciphered by key kX,Y, which is shared by users X and Y.

– A  T : { Z } kA || { W } kA,T: A sends T a message with the concatenation of Z enciphered

using kA, A’s key, and W enciphered using kA,T, key shared by A and T.

– rand1, rand2: nonces (nonrepeating random numbers)

Session, Interchange Keys

An interchange key is a cryptographic key associated with a principal to a communication. A

session key is a cryptographic key associated with the communication itself. For e.g. A wants to

send a message m to B, assume public key encryption, here A generates a random cryptographic

key ksession and uses it to encipher m that is to be used for this message only called a session key.

Now A enciphers ksession with B’s public key kB (kB enciphers all session keys A uses to

communicate with B called an interchange key). Finally A sends {m} ksession || {ksession} kB.

Benefits

It limits amount of traffic enciphered with single key, here standard practice is to decrease the

amount of traffic an attacker can obtain.

cs
itn

ep
al

Downloaded from CSIT Tutor

Source: www.csitnepal.com (Compiled by Tej Shahi) Page 2

Prevents some attacks: E.g.- Suppose Alice is a client of Bob's stockbrokering firm. She needs

to send Bob one of two messages: BUY or SELL. The attacker, Cathy, enciphers both messages

with Bob's public key. When Alice sends her message, Cathy compares it with her messages and

sees which one it matches.

Key Exchange

Key exchange is any method in cryptography by which cryptographic keys are exchanged

between users, allowing use of a cryptographic algorithm. The key exchange problem is how to

exchange whatever keys or other information needed so that no one else can obtain a copy.

Traditionally, this required trusted couriers (with or without briefcases handcuffed to their

wrists), or diplomatic bags, or some other secure channel. With the advent of public key / private

key cipher algorithms, the encrypting key could be made public, since (at least for high quality

algorithms) no one without the decrypting key could decrypt the message.

In principle, then, the only remaining problem was to be sure (or at least confident) that a public

key actually belonged to its supposed owner. Because it is possible to 'spoof' another's identity in

any of several ways, this is not a trivial or easily solved problem, particularly when the two users

involved have never met and know nothing about each other.

The goal of key exchange is to enable A to B, and vice versa communication secret, using a

shared cryptographic key. Solutions to this problem must meet the following criteria.

1. The key that A and B are to share cannot be transmitted in the clear. Either it must be

enciphered when sent, or A and B must derive it without an exchange of data from which

the key can be derived. (A and B can exchange data, but a third party cannot derive the

key from the data exchanged.)

2. A and B may decide to trust a third party (called "C" here).

3. The cryptosystems and protocols are publicly known. The only secret data is to be the

cryptographic keys involved.

Classical Key Exchange

cs
itn

ep
al

Downloaded from CSIT Tutor

Source: www.csitnepal.com (Compiled by Tej Shahi) Page 3

Suppose Alice(A) and Bob(B) wish to communicate. If they share a common key, they can use a

classical cryptosystem. But how do they agree on a common key? If A sends one to B, Eve the

eavesdropper will see it and be able to read the traffic between them. In this context A can’t send

the key to be shared to B in the clear. To avoid this bootstrapping problem, classical protocols

rely on a trusted third party, Cathy(C). A and C share a secret key, kA, and B and C share a

(different) secret key, kB. The goal is to provide a secret key, kS that A and B share. The

following simple protocol provides a starting point

Simple Protocol

To avoid bootstrap problem we can use the following simple protocol.

1. A  C: {request for session key to B} kA.

2. C  A: { ksession }kA || { ksession }kB.

3. A  B: { ksession }kB.

B now deciphers the message and uses ksession to communicate with A.

Problems: This protocol is the basis for many more sophisticated protocols. However, B does

not know to whom he is talking. This problem leads us to replay attack: Eve records message

from A to B, later replays it; B may think he’s talking to A, but he isn’t and session key reuse:

Eve replays message from A to B, so B re-uses session key. So the protocols must provide

authentication and defense against replay attack. The following algorithm provides solution to

the above problem.

Needham-Schroeder Protocol

1. A  C : { A || B || rand1 }

Alice sends a message to the server identifying herself and Bob, telling the server she

wants to communicate with Bob.

2. C  A : { A || B || rand1 || ksession ||{A || ksession} kB } kA

The server (Cathy) generates ksession and sends back to Alice a copy encrypted under kB

for Alice to forward to Bob and also a copy for Alice. Since Alice may be requesting

keys for several different people, the nonce assures Alice that the message is fresh and

that the server (Cathy) is replying to that particular message and the inclusion of Bob's

name tells Alice who she is to share this key with.

3. A  B : { A || ksession } kB

cs
itn

ep
al

Downloaded from CSIT Tutor

Source: www.csitnepal.com (Compiled by Tej Shahi) Page 4

Alice forwards the key to Bob who can decrypt it with the key he shares with the server

(Cathy), thus authenticating the data.

4. B  A : { rand2 } ksession

Bob sends Alice a nonce encrypted under ksession to show that he has the key.

5. A  B : { rand2 – 1 }ksession

Alice performs a simple operation on the nonce, re-encrypts it and sends it back verifying

that she is still alive and that she holds the key.

Argument: A talking to B

Second message: This is the response to the first message (since rand1 in second message is

same as of in rand1 first message) enciphered using key only A and C knows.

Third message: A knows only B can read it since only B can derive session key from message

and any messages enciphered with that key are from B.

Argument: B talking to A

Third message: This message contains A (name) and session key provided by C that is

enciphered using key only B and C know.

Fourth message: Uses session key to determine if it is replay from Eve the eavesdropper. If Eve

recorded the message, she could have replayed it to Bob. In that case, Eve would not have known

the session key, so Bob sets out to verify that his unknown recipient does know it. He sends a

random message enciphered by ksession to Alice. If Eve intercepts the message, she will not know

what to return; should she send anything, the odds of her randomly selecting a message that is

correct is very low and Bob will detect the attempted replay. But if Alice is indeed initiating the

communication, when she gets the message she can decipher it (because she knows ksession),

apply some fixed function to the random data (here, decrement it by 1), and encipher the result

and return it to Bob. Then Bob will be sure he is talking to Alice.

Denning-Sacco Modification

cs
itn

ep
al

Downloaded from CSIT Tutor

Source: www.csitnepal.com (Compiled by Tej Shahi) Page 5

Needham-Schroeder protocol assumes all keys are secret but suppose that if Eve can obtain

session key. How does that affect protocol? In this context Eve knows ksession. So we have

situation where B thinks that A has sent the message as seen from below:

1. Eve  B : { A || ksession } kB

2. B  A : { rand2 } ksession [intercepted by Eve]

3. Eve  B : { rand2 – 1 }ksession.

Solution: In protocol (Needham-Schroeder), Eve impersonates A. So we have replay in third

step (first in above). For this solution can be use of time stamp T to detect replay.

Needham-Schroeder with Denning-Sacco Modification

Denning and Sacco suggest using timestamps to enable B to detect replay.

1. A C : { A || B || rand1 }

2. C A : { A || B || rand1 || ksession || {A || T || ksession} kB } kA

3. A B : {A || T || ksession} kB

4. B A : { rand2 } ksession

5. A B : { rand2 – 1 }ksession

Where, T is a timestamp. When B gets the message in step 3, he rejects it if the timestamp is too

old (too old being determined from the system in use). This modification requires synchronized

clocks. The weakness with this solution is a party with a slow clock is vulnerable to a replay

attack adds that a party with a fast clock is also vulnerable, and simply resetting the clock does

not eliminate the vulnerability.

Otway-Rees Protocol

This protocol corrects problem of Eve replaying the third message in the protocol and does not

use timestamps so it is not vulnerable to the problems that Denning-Sacco modification has. It

uses integer num to associate all messages with particular exchange. The following are the steps

in the protocol.

1. A B : num || A || B || { rand1 || num || A || B }kA

2. B C : num || A || B || { rand1 || num || A || B }kA || {rand2 || num || A || B }kB

3. C B : num || { rand1 || ksession }kA || { rand2 || ksession }kB

cs
itn

ep
al

Downloaded from CSIT Tutor

Source: www.csitnepal.com (Compiled by Tej Shahi) Page 6

4. B A : num || { rand1 || ksession }kA

The purpose of the integer num is to associate all messages with a particular exchange.

Argument: A talking to B

Fourth message: When Alice receives the fourth message from Bob, she checks that the num

agrees with the num in the first message that she sent to Bob. If so, she knows that this is part of

the exchange. She also trusts that Cathy generated the session key because only Cathy and Alice

know kAlice, and the random number rand1 agrees with what Alice put in the enciphered portion

of the message. Combining these factors, Alice is now convinced that she is talking to Bob.

Argument: B talking to A

Third message: When Bob receives the message from Cathy, he determines that the num

corresponds to the one he received from Alice and sent to Cathy. He deciphers that portion of the

message enciphered with his key, and checks that rand2 is what he sent. He then knows that

Cathy sent the reply, and that it applies to the exchange with Alice.

Suppose Eve gets old ksession, message in third step num || {rand1 || ksession}kA || {rand2 || ksession}kB.

Eve forwards appropriate part to A

– A has no ongoing key exchange with B: num matches nothing, so is rejected

– A has ongoing key exchange with B: num does not match, so is again rejected

 If replay is for the current key exchange, and Eve sent the relevant part before B did, Eve

could simply listen to traffic; no replay involved.

Kerberos

It is a secret key based service for providing authentication in a network. It is based on

Needham-Schroeder with Denning-Sacco modification. It makes use of a trusted third party,

termed a key distribution center (KDC), which consists of two logically separate parts: an

Authentication Server (AS) and a Ticket Granting Server (TGS). Kerberos works on the basis of

"tickets" which serve to prove the identity of users.

The KDC maintains a database of secret keys; each entity on the network — whether a client or a

server — shares a secret key known only to itself and to the KDC. Knowledge of this key serves

cs
itn

ep
al

Downloaded from CSIT Tutor

Source: www.csitnepal.com (Compiled by Tej Shahi) Page 7

to prove an entity's identity. For communication between two entities, the KDC generates a

session key which they can use to secure their interactions

Here once authenticator authenticates the user, the ticket must be used by the client to request the

service from the server.

Idea

– User u authenticates to Kerberos server and obtains ticket Tu,TGS for ticket granting service

(TGS).

– For using service s by u: User sends authenticator Au, ticket Tu,TGS to TGS asking for ticket

for service. TGS sends ticket Tu,s to user and user sends Au, Tu,s to server as request to use s.

Ticket

It is the credential saying issuer has identified ticket requester. Example ticket issued to user u

for service s Tu,s = s || { u || u’s address || valid time || ku,s } ks, where: ku,s is session key for user

and service; Valid time is interval for which ticket valid; u’s address may be IP address or

something else.

Authenticator

It is the system containing identity of sender of ticket that is used to confirm sender is entity to

which ticket was issued. Example: authenticator user u generates for service s

Au,s = { u || generation time || kt } ku,s, where: kt is alternate session key; Generation time is

when authenticator generated.

Protocol

1. user  C: {user || TGS}

2. C  user: {ku,TGS}ku || Tu,TGS

3. user  TGS: service || Au,TGS || Tu,TGS

4. TGS  user: user || {ku,s}ku,TGS || Tu,s

5. user  service: Au,s || Tu,s

6. service  user: (t + 1) ku,s

Analysis

cs
itn

ep
al

Downloaded from CSIT Tutor

Source: www.csitnepal.com (Compiled by Tej Shahi) Page 8

– First two steps get user ticket to use TGS. Here user u can obtain session key only if u knows

key shared with C.

– Next four steps show how u gets and uses ticket for service s

 Service s validates request by checking sender (using Au,s) is same as entity ticket

issued to.

 Step 6 optional; used when u requests confirmation

Problems

Kerberos relies on clocks being synchronized to prevent replay attacks. If the clocks are not

synchronized, and if old tickets and authenticators are not cached, replay is possible.

The tickets have some fixed fields so a dictionary attack can be used to determine keys shared by

services or users and the ticket-granting service or the authentication service.

Public Key Cryptographic Key Exchange

In this approach interchange keys are known as of eA, eB A and B’s public keys known to all and

dA, dB A and B’s private keys known only to owner. The simple protocol with ksession as desired

session key is A B: {ksession}eB.

Problem and Solution

It is vulnerable to forgery or replay because eB known to anyone, B has no assurance that A sent

message. A simple fix uses A’s private key, where ksession is desired session key and A B: A ||

{{ksession}dA}eB.

Notes:

A can include message enciphered with ksession. The above solution assumes B has A’s public

key, and vice versa. If not, each must get it from public server. If keys not bound to identity of

owner, attacker Eve can launch a man-in-the-middle attack. Solution to this (binding identity to

keys) discussed later as public key infrastructure (PKI).

Man-in-the-Middle Attack

cs
itn

ep
al

Downloaded from CSIT Tutor

Source: www.csitnepal.com (Compiled by Tej Shahi) Page 9

1. A P : { send me B's public key } [intercepted by Eve]

2. Eve P : { send me B's public key }

3. P Eve : eB

4. Eve A : eEve

5. A B : { ksession } eEve [intercepted by Eve]

6. Eve B : { ksession }eB

Key Generation

The secrecy that cryptosystems provide resides in the selection of the cryptographic key. If an

attacker can determine someone else's key, the attacker can read all traffic enciphered using that

key or can use that key to impersonate its owner. Hence, generating keys that are difficult to

guess or to determine from available information is critical.

Goal: generate keys that are difficult to guess

Problem statement: given a set of K potential keys, choose one randomly. This is

equivalent to selecting a random number between 0 and K–1 inclusive.

Why is this hard: generating random numbers is hard since numbers are usually pseudo-

random, that is, generated by an algorithm.

What is “Random”?

A sequence of random numbers is a sequence of numbers n1, n2, ... such that for any positive

integer k, an observer cannot predict nk even if n1, ..., nk–1 are known.

Best physical source of randomness: Random pulses, Electromagnetic phenomena,

Characteristics of computing environment like disk latency, Ambient background noise.

What is “Pseudorandom”?

A sequence of pseudorandom numbers is a sequence of numbers intended to simulate a sequence

of cryptographically random numbers but generated by an algorithm.

Very difficult to do this well

cs
itn

ep
al

Downloaded from CSIT Tutor

Source: www.csitnepal.com (Compiled by Tej Shahi) Page 10

Linear congruential generators [nk = (ank–1 + b) mod n] this is broken; Polynomial congruential

generators [nk = (ajnk–1
j + … + a1nk–1 + a0) mod n] broken too. Here, “broken” means next

number in sequence can be determined.

Best Pseudorandom Numbers

A strong mixing function is a function of two or more inputs that produces an output each bit of

which depends on some nonlinear function of all the bits of the input. Examples: DES, MD5,

SHA-1.

E.g.: On a UNIX system, the status of the processes is highly variable. An attacker is unlikely to

reproduce the state at a future time. So the command (date ; ps gaux) | md5 would produce

acceptable pseudorandom data. In this command, ps gaux lists all information about all processes

on the system.

Cryptographic Key Infrastructure

Because classical cryptosystems use shared keys, it is not possible to bind an identity to a key.

Instead, two parties need to agree on a shared key. Public key cryptosystems use two keys, one

of which is to be available to all. The association between the cryptographic key and the

principal is critical, because it determines the public key used to encipher messages for secrecy.

If the binding is erroneous, someone other than the intended recipient could read the message.

For purposes of this discussion, we assume that the principal is identified by a name of some

acceptable sort and has been authenticated to the entity that generates the cryptographic keys.

The question is how some (possibly different) principal can bind the public key to the

representation of identity.

An obvious idea is for the originator to sign the public key with her private key, but this merely

pushes the problem to another level, because the recipient would only know that whoever

generated the public key also signed it. No identity is present.

Certificates

cs
itn

ep
al

Downloaded from CSIT Tutor

Source: www.csitnepal.com (Compiled by Tej Shahi) Page 11

A certificate is a token that binds an identity to a cryptographic key. When B wants to

communicate with A, B obtains A's certificate CA. for e.g. Create token (message) containing:

Identity of principal (here, A), Corresponding public key, Timestamp (when issued), and Other

information (perhaps identity of signer) signed by trusted authority (here, C) as CA = { eA || A || T

}dC.

Use

B gets A’s certificate: If B knows C’s public key, B can decipher the certificate and see when

was certificate issued? Is the principal A? Now B has A’s public key.

Problem: B needs C’s public key to validate certificate. Two approaches deal with this problem.

The first, by Merkle, eliminates Cs signature; the second structures certificates into signature

chains.

Merkle’s Tree Scheme

This scheme keeps certificates in a file and changing any certificate changes the file. This

reduces the problem of substituting faked certificates to a data integrity problem. Cryptographic

hash functions create checksums that reveal changes to files.

Let Yi be an identifier and its associated public key, and let Y1, ..., Yn be stored in a file. Define a

function f: D x D D, where D is a set of bit strings. Let h: N x N D be a cryptographic hash

function, where N is integers set. Here we define

h(i, j) = f(Ci, Cj) if i ≥ j,

h(i, j) = f(h(i, (i+j)/2), h((i+j)/2+1, j)) if i < j,

Example:

 Construct Merkle hash tree by computing hashes recursively

 h is hash function

 Ci is certificate i

 Root hash (h(1,4) in example) is published and is known to all

 Root hash is signed by the certificate authority to ensure the value’s integrity

 C1 C 2 C 3 C 4

h(1,1) h(2,2) h(3,3) (4,4)

h(1,2) h(3,4)

h(1,4)

cs
itn

ep
al

Downloaded from CSIT Tutor

Source: www.csitnepal.com (Compiled by Tej Shahi) Page 12

h(1,4)

h(1,2) h(3,4)

h(1,1) h(2,2) h(3,3) h(4,4)

 C1 C2 C3 C4

Validation

To validate C1:

Compute h(1, 1), obtain h(2, 2)

Compute h(1, 2), obtain h(3, 4)

Compute h(1,4) and compare to known h(1, 4)

 Need to know siblings of nodes on

path from C1 to the root

 The proof from CA consists of these hashes (in rectangles on the left)

Problem

In this scheme file must be available for validation otherwise, can’t recompute hash at root of

tree. Not practical if there are too many certificates and users and users and certificates

distributed over widely separated systems.

Issuers

Certification Authority (CA): entity that issues certificates. If all certificates have a common

issuer, then the issuer's public key can be distributed out of band. However, this is infeasible. For

example, it is highly unlikely that France and the United States could agree on a single issuer for

their organizations' and citizens' certificates. This suggests multiple issuers, which complicates

the process of validation.

Suppose Alice has a certificate from her local CA, Cathy. She wants to communicate with Bob,

whose local CA is Dan. The problem is for Alice and Bob to validate each other's certificates.

Assume that X<<Y>> represents the certificate that X generated for the subject Y (X is the CA

that issued the certificate). Bob's certificate is Dan<<Bob>>. If Cathy has issued a certificate to

Dan, Dan has a certificate Cathy<<Dan>>; similarly, if Dan has issued a certificate to Cathy,

Cathy has a certificate Dan<<Cathy>>. In this case, Dan and Cathy are said to be cross-certified.

Because Alice has Cathy's (trusted) public key, she can obtain Cathy<<Dan>> and form the

signature chain

cs
itn

ep
al

Downloaded from CSIT Tutor

Source: www.csitnepal.com (Compiled by Tej Shahi) Page 13

Cathy<<Dan>> Dan<<Bob>>

Because Alice can validate Dan's certificate, she can use the public key in that certificate to

validate Bob's certificate. Similarly, Bob can acquire Dan<<Cathy>> and validate Alice's

certificate.

Dan<<Cathy>> Cathy<<Alice>>

Storing and Recovering Keys

Key storage arises when a user needs to protect a cryptographic key in a way other than by

remembering it. If the key is public, of course, any certificate-based mechanism will suffice,

because the goal is to protect the key's integrity. But secret keys (for classical cryptosystems) and

private keys (for public key cryptosystems) must have their confidentiality protected as well.

Storing Keys

In case of multi-user or networked systems: attackers may defeat access control mechanisms.

Even the encipherment of file containing key does not help since the attacker can monitor

keystrokes to decipher files as key will be resident in memory that attacker may be able to read.

One of the solutions can be the use of physical devices like “smart card” where key never enters

system. In this approach the card can be stolen, so use of two devices that combine bits to make

single key can be used.

Key Revocation

If the certificate is invalidated before expiration i.e. the key is invalid, then it may be due to

compromised key or may be due to change in circumstance (e.g., someone leaving company).

There are two problems with revoking a public key. The first is to ensure that the revocation is

correct—in other words, to ensure that the entity revoking the key is authorized to do so. The

second is to ensure timeliness of the revocation throughout the infrastructure. This second

problem depends on reliable and highly connected servers and is a function of the infrastructure

as well as of the locations of the certificates and the principals who have copies of those

certificates. Ideally, notice of the revocation will be sent to all parties when received, but

invariably there will be a time lag.

cs
itn

ep
al

Downloaded from CSIT Tutor

Source: www.csitnepal.com (Compiled by Tej Shahi) Page 14

CRLs (Certificate Revocation Lists)

A certificate revocation list is a list of certificates that are no longer valid. A certificate

revocation list contains the serial numbers of the revoked certificates and the dates on which they

were revoked. It also contains the name of the issuer, the date on which the list was issued, and

when the next list is expected to be issued. The issuer also signs the list. Under X.509, only the

issuer of a certificate can revoke it.

PGP allows signers of certificates to revoke their signatures as well as allowing owners of

certificates, and their designees, to revoke the entire certificates. The certificate revocation is

placed into a PGP packet and is signed just like a regular PGP certificate. A special flag marks it

as a revocation message.

cs
itn

ep
al

Downloaded from CSIT Tutor

Source: www.csitnepal.com (Compiled by Tej Shahi) Page 1

Chapter 8

Network Security

Networks and Cryptography

ISO/OSI model

Conceptually, each host has peer at each layer and

peers communicate with peers at same layer (see

books on network for detail)

Link and End-to-End Protocols

Let hosts C0, …, Cn be such that Ci and Ci+1 are directly

connected, for 0 ≤i < n. A communications protocol

that has C0 and Cn as its endpoints is called an end-to-

end protocol. A communications protocol that has Cj

and Cj+1 as its endpoints is called a link protocol.

The difference between an end-to-end protocol and a

link protocol is that the intermediate hosts play no

part in an end-to-end protocol other than forwarding

messages. Whereas, a link protocol describes how

each pair of intermediate hosts processes each

message.

Link encryption: Each host enciphers message and “next hop” host can read it i.e. intermediate hosts

can read the message. For e.g. In PPP Encryption Control Protocol host gets message, deciphers it,

figures out where to forward it, enciphers it in appropriate key and forwards it. Here each host shares

key with neighbor and can be set on per-host or per-host-pair basis. Link encryption can protect headers

of packets and it is possible to hide source and destination but, source can be deduced from traffic

flows.

cs
itn

ep
al

Downloaded from CSIT Tutor

Source: www.csitnepal.com (Compiled by Tej Shahi) Page 2

End-to-end encryption: Host enciphers message so host at other end of communication can read it i.e.

message cannot be read at intermediate hosts for e.g. TELNET protocol where messages between client,

server enciphered, and encipherment, decipherment occur only at these hosts. In this approach each

host shares key with destination and can be set on per-host or per-host-pair basis. This approach cannot

hide packet headers and attacker can read source, destination.

Security at Different Layers

The following figure shows the security at different layers

Security at the Application Layer: E-Mail

a) Pretty Good Privacy (PGP):

PGP is a public key encryption package to protect e-mail and data files. It lets you communicate

securely with people you've never met, with no secure channels needed for prior exchange of

keys. It's well featured and fast, with sophisticated key management, digital signatures, data

compression, and good ergonomic design. The actual operation of PGP is based on five services:

authentication, confidentiality, compression, e-mail compatibility, and segmentation.

- PGP provides authentication via a digital signature scheme.

- PGP provides confidentiality by encrypting messages before transmission

- PGP compresses the message after applying the signature and before encryption. The

cs
itn

ep
al

Downloaded from CSIT Tutor

Source: www.csitnepal.com (Compiled by Tej Shahi) Page 3

MT

A

U

A

MT

A

U

A

MT

A

U

A

User

Agent

s Message

Transfer

Agents

 idea is to save space.

- PGP encrypts a message together with the signature (if not sent separately) resulting into a

stream of arbitrary 8-bit octets. But since many e-mail systems permit only use of blocks

consisting of ASCII text, PGP accommodates this by converting the raw 8-bit binary streams

into streams of printable ASCII characters using a radix-64 conversion scheme. On receipt, the

block is converted back from radix-64 format to binary.

- To accommodate e-mail size restrictions, PGP automatically segments email messages that

are too long. However, the segmentation is done after all the housekeeping is done on the

message, just before transmitting it. So the session key and signature appear only once at the

beginning of the first segment transmitted. At receipt, the receiving PGP strips off all e-mail

headers and reassembles the original mail.

b) Privacy Enchanced Mail (PEM):

The figure below shows a typical network mail service. The U (user agent) interacts directly with

the sender. When the message is composed, the U hands it to the MT (message transport, or

transfer, agent). The MT transfers the message to its destination host, or to another MT, which in

turn transfers the message further. At the destination host, the MT invokes a user agent to deliver

the message.

An attacker can read electronic mail at any of the computers on which MTs handling the

message reside, as well as on the network itself. An attacker could also modify the message

without the recipient detecting the change. Because authentication mechanisms are minimal and

easily evaded, a sender could forge a letter from another and inject it into the message handling

system at any MT, from which it would be forwarded to the destination. Finally, a sender could

deny having sent a letter, and the recipient could not prove otherwise to a disinterested party.

These four types of attacks (violation of confidentiality, authentication, message integrity, and

nonrepudiation) make electronic mail nonsecure. So IETF with the goal of e-mail privacy

develop electronic mail protocols that would provide the following services.

cs
itn

ep
al

Downloaded from CSIT Tutor

Source: www.csitnepal.com (Compiled by Tej Shahi) Page 4

1. Confidentiality, by making the message unreadable except to the sender and recipient(s)

2. Origin authentication, by identifying the sender precisely

3. Data integrity, by ensuring that any changes in the message are easy to detect

4. Nonrepudiation of origin (if possible)

The protocols were named Privacy-Enhanced Electronic Mail (or PEM).

PEM vs. PGP

– Use of different ciphers: PGP uses IDEA cipher but PEM uses DES in CBC mode.

– Use of certificate models: PGP uses general “web of trust” but PEM uses hierarchical

certification structure

– Handling end of line: PGP remaps end of line if message tagged “text”, but leaves them

alone if message tagged “binary” whereas PEM always remaps end of line.

Security at the Network Layer

- IPSec (Internet Protocol Security)

IPSec is a suite of authentication and encryption protocols developed by the Internet Engineering

Task Force (IETF) and designed to address the inherent lack of security for IP-based networks.

It is a collection of protocols and mechanisms that provide confidentiality, authentication,

message integrity, and replay detection at the IP layer. In the data transmission IPsec protect all

messages sent along a path. If the IPsec mechanisms reside on an intermediate host (for example,

a firewall or gateway), that host is called a security gateway.

Security at the Transport Layer

Secured Socket Layer (SSL)

dest gw2 gw1 src
IP IP+IPsec IP

security gateway

cs
itn

ep
al

Downloaded from CSIT Tutor

Source: www.csitnepal.com (Compiled by Tej Shahi) Page 5

The Secure Socket Layer (SSL) is a standard developed by Netscape Corporation to provide

security in WWW browsers and servers. The current version, SSLv3, is the basis for an Internet

standard protocol under development. The newer protocol, the Transport Layer Security (TLS)

protocol, is compatible with SSLv3 and has only minor changes. It has not yet been adopted

formally.

SSL Main Goals

1. Cryptography security: One of the SSL protocol’s primary goals is to establish a secure

connection between two parties. A symmetric Encryption is used after an initial handshake to

define a secret key.

2. Reliability: The connection is reliable. Message transport includes a message integrity check

using a keyed MAC computed using secure hash functions.

3. Interoperability: Different applications should be able to successfully exchange

cryptographic parameters without knowledge of one another's code.

4. Extensibility: Provide a framework that allows new public-key and bulk encryption methods

to be incorporated as necessary. This will also achieve the goal of avoiding the need to

implement an entire new security library.

5. Relative efficiency: Cryptographic operations tend to be highly CPU intensive. For this

reason the SSL protocol has some options (such as caching and compression), which allow a

reduction in the number of connections that need to be established from scratch and a

reduction in network activity.

SSL Architecture

SSL, a set of protocols, uses TCP to provide reliable end to end service. SSLv3 consists of two

layers (see figure below) supported by numerous cryptographic mechanisms. The lower layer

called SSL Record Protocol provides the basic security services to various higher level protocols,

particularly HTTP. There are three higher level protocols that are defined as parts of SSL namely

SSL Handshake Protocol, the Change Cipher Spec Protocol, and Alert Protocol.

SSL works in terms of connections and sessions between

clients and servers. An SSL session is an association between

two peers. An SSL connection is the set of mechanisms used

cs
itn

ep
al

Downloaded from CSIT Tutor

Source: www.csitnepal.com (Compiled by Tej Shahi) Page 6

to transport data in an SSL session. A single session may have many connections. Two peers

may have many sessions active at the same time, but this is not common.

Each party keeps information related to a session with each peer. The data associated with a

session includes the following information.

1. Session identifier: An arbitrary byte sequence chosen by the server to identify an active or

resumable session state

2. Peer certificate: X509.v3 certificate of the peer. This may be null.

3. Compression method: The algorithm used to compress data prior to encryption.

4. Cipher spec: Specifies the bulk data encryption algorithm (null, DES, etc.) and a MAC

algorithm (MD5 or SHA). It also defines attributes such as the hash_size.

5. Master secret: 48-byte secret shared between the client and server.

6. Is resumable: Defines whether the session can be used to initiate new connections.

A connection describes how data is sent to, and received from, the peer. Each party keeps

information related to a connection. Each peer has its own parameters. The information

associated with the connection includes the following.

1. Server and client random: Random data for server and client for each connection.

2. Server write MAC secret: Key for MAC operations on data written by the server.

3. Client write MAC secret: Key for MAC operations on data written by the client.

4. Server write key: Cipher key for encryption by the server and decryption by client.

5. Client write key: Cipher key for encryption by the client and decryption by server.

6. Initialization vectors (IV): When a block cipher in CBC mode is used, IV is maintained for

each key. This field is first initialized by the SSL handshake protocol then final ciphertext

block from each record is preserved for use with the next record.

7. Sequence numbers: Each party maintains separate sequence numbers for transmitted and

received messages for each connection. When a party sends or receives a change cipher

spec message, the appropriate sequence number is set to zero. Sequence numbers are of type

uint64 and may not exceed 264-1.

The SSL Handshake Protocol

This protocol, also called the key-exchange protocol, is responsible for establishing a secure

session between two parties. The SSL handshake protocol can be divided to several important

stages:

cs
itn

ep
al

Downloaded from CSIT Tutor

Source: www.csitnepal.com (Compiled by Tej Shahi) Page 7

1. Authenticate the server to the client.

2. Negotiation of common cryptographic algorithms, that both server and client support.

3. Authenticate the client to the server (optional).

4. Using public-key encryption to exchange cryptography parameters (shared secrets).

5. Establish an encrypted SSL connection.

Firewalls

Firewall is hardware device or software applications that act as filters between a company’s

private network and the internet. It protects networked computers from intentional hostile

intrusion that could compromise confidentiality or result in data corruption or denial of service

by enforcing an access control policy between two networks.

The main purpose of a firewall system is to control access to or from a protected network (i.e., a

site). It implements a network access policy by forcing connections to pass through the firewall,

where they can be examined and evaluated. A firewall system can be a router, a personal

computer, a host, or a collection of hosts, set up specifically to shield a site or subnet from

protocols and services that can be abused from hosts outside the subnet. A firewall system is

usually located at a higher level gateway, such as a site's connection to the Internet, however

firewall systems can be located at lower-level gateways to provide protection for some smaller

collection of hosts or subnets. The main function of a firewall is to centralize access control. A

firewall serves as the gatekeeper between the untrusted Internet and the more trusted internal

networks. The earliest firewalls were simply routers.

Firewalls provide several types of protection:

- They can block unwanted traffic.

- They can direct incoming traffic to more trustworthy internal systems.

cs
itn

ep
al

Downloaded from CSIT Tutor

Source: www.csitnepal.com (Compiled by Tej Shahi) Page 8

- They hide vulnerable systems, which can’t easily be secured from the Internet.

- They can log traffic to and from the private network.

- They can hide information like system names, network topology, network device

 types, and internal user ID’s from the Internet.

- They can provide more robust authentication than standard applications might be

 able to do.

cs
itn

ep
al

Downloaded from CSIT Tutor

